These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 8590226
41. Beta adrenergic receptors facilitate norepinephrine release from rat hypothalamic and hippocampal slices. Murugaiah KD, O'Donnell JM. Res Commun Mol Pathol Pharmacol; 1995 Nov; 90(2):179-90. PubMed ID: 8747788 [Abstract] [Full Text] [Related]
44. Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells. Gray PT. J Physiol; 1988 Dec; 406():35-53. PubMed ID: 3254416 [Abstract] [Full Text] [Related]
45. Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1 alpha via a beta adrenoceptor mediated mechanism. Haskó G, Shanley TP, Egnaczyk G, Németh ZH, Salzman AL, Vizi ES, Szabó C. Br J Pharmacol; 1998 Nov; 125(6):1297-303. PubMed ID: 9863660 [Abstract] [Full Text] [Related]
46. Effects of the Aconitum alkaloid mesaconitine in rat hippocampal slices and the involvement of alpha- and beta-adrenoceptors. Ameri A. Br J Pharmacol; 1998 Jan; 123(2):243-50. PubMed ID: 9489612 [Abstract] [Full Text] [Related]
47. Contribution of extracellular and intracellular calcium to the enhanced effect of an alpha-adrenergic agonist on amylase release from dispersed rat parotid cells. Takemura H, Ohshika H. J Dent Res; 1985 Jun; 64(6):881-5. PubMed ID: 2582014 [Abstract] [Full Text] [Related]
50. Two-dimensional millisecond analysis of intracellular Ca2+ sparks in cardiac myocytes by rapid scanning confocal microscopy: increase in amplitude by isoproterenol. Tanaka H, Nishimaru K, Sekine T, Kawanishi T, Nakamura R, Yamagaki K, Shigenobu K. Biochem Biophys Res Commun; 1997 Apr 17; 233(2):413-8. PubMed ID: 9144549 [Abstract] [Full Text] [Related]
51. The effects of isoproterenol on intracellular calcium concentration. Takuwa Y, Takuwa N, Rasmussen H. J Biol Chem; 1988 Jan 15; 263(2):762-8. PubMed ID: 3335525 [Abstract] [Full Text] [Related]
52. Digital imaging of intracellular Ca2+ signaling in rat parotid acinar cells. Tojyo Y, Tanimura A, Matsumoto Y. Life Sci; 1998 Jan 15; 62(17-18):1635-9. PubMed ID: 9585149 [Abstract] [Full Text] [Related]
54. Parallel increase in secretory activity between N-glycosylated and nonglycosylated α-amylase without protein synthesis after short-term β-adrenergic receptor activation in isolated rat parotid acinar cells. Chen LH, Yang ZM, Chen WW. Anal Quant Cytopathol Histpathol; 2014 Oct 15; 36(5):279-84. PubMed ID: 25804000 [Abstract] [Full Text] [Related]
55. Receptor control of calcium influx in parotid acinar cells. Putney JW, VanDeWalle CM, Leslie BA. Mol Pharmacol; 1978 Nov 15; 14(6):1046-53. PubMed ID: 215892 [No Abstract] [Full Text] [Related]
56. Effects of monensin on amylase release from mouse parotid acini. Watson EL, Farnham CJ, Friedman J, Farnham W. Am J Physiol; 1981 May 15; 240(5):C189-92. PubMed ID: 6165249 [Abstract] [Full Text] [Related]
57. The reversible inability of isoproterenol-activated parotid gland cells to initiate DNA synthesis in the hypocalcemic thyroparathyroidectomized rat. Tsang BK, Whitfield JF, Rixon RH. J Cell Physiol; 1981 Apr 15; 107(1):41-6. PubMed ID: 7217223 [Abstract] [Full Text] [Related]
58. Refractoriness to muscarinic and adrenergic agonists in the rat parotid: responses of adenosine and guanosine cyclic 3', 5'-monophosphates. Harper JF, Brooker G. Mol Pharmacol; 1977 Nov 15; 13(6):1048-59. PubMed ID: 201829 [No Abstract] [Full Text] [Related]