These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 8594996
1. Determination of optimally resolving gel concentration and migration time (path) in gel electrophoresis. Aldroubi A, Chang HT, Zakharov SF, Chrambach A. Anal Biochem; 1995 Nov 01; 231(2):432-6. PubMed ID: 8594996 [Abstract] [Full Text] [Related]
2. Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle. Tietz D, Gombocz E, Chrambach A. Electrophoresis; 1991 Oct 01; 12(10):710-21. PubMed ID: 1802689 [Abstract] [Full Text] [Related]
3. Analysis of one-dimensional gels and two-dimensional Serwer-type gels on the basis of the extended Ogston model using personal computers. Tietz D. Electrophoresis; 1991 Jan 01; 12(1):28-39. PubMed ID: 2050096 [Abstract] [Full Text] [Related]
4. DNAOPT: a computer program to aid optimization of DNA gel electrophoresis and SDS-PAGE. Raghava GP. Biotechniques; 1995 Feb 01; 18(2):274-8, 280. PubMed ID: 7727130 [Abstract] [Full Text] [Related]
5. The resolution between two native proteins and between their sodium dodecyl sulfate-complexes in agarose and polyacrylamide gel electrophoresis. Chen N, Chrambach A. Electrophoresis; 1997 Jun 01; 18(7):1126-32. PubMed ID: 9237567 [Abstract] [Full Text] [Related]
6. The band areas of proteins determined by fluorescent scanning in the commercial automated gel electrophoresis apparatus. Zakharov SF, Kwok SH, Sokoloff H, Chang HT, Radko SP, Chrambach A. Electrophoresis; 1998 Jul 01; 19(10):1625-30. PubMed ID: 9719537 [Abstract] [Full Text] [Related]
7. Computerized methods for analyzing two-dimensional agarose gel electropherograms. Aldroubi A, Unser M, Tietz D, Trus B. Electrophoresis; 1991 Jan 01; 12(1):39-46. PubMed ID: 2050098 [Abstract] [Full Text] [Related]
8. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration? Strutz K, Stellwagen NC. Electrophoresis; 1998 May 01; 19(5):635-42. PubMed ID: 9629889 [Abstract] [Full Text] [Related]
9. Program in BASIC for Ferguson plot analysis, using a personal computer: application to gel electrophoresis in a continuous buffer. Gombocz E, Chrambach A. Electrophoresis; 1989 Mar 01; 10(3):199-214. PubMed ID: 2707243 [Abstract] [Full Text] [Related]
10. Preparative application of commercial automated gel electrophoresis apparatus to subcellular-sized particles: sequential isolations, fractions re-run, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, yield and purity. Chen N, Chrambach A. Electrophoresis; 1998 Dec 01; 19(18):3096-102. PubMed ID: 9932801 [Abstract] [Full Text] [Related]
11. Sieving of ionic constituents across moving boundaries in gel electrophoresis. Orbán L, Fawcett JS, Tietz D, Chrambach A. Electrophoresis; 1989 Apr 01; 10(4):254-9. PubMed ID: 2743969 [Abstract] [Full Text] [Related]
12. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus. Gombocz E, Cortez E. Electrophoresis; 1999 Jun 01; 20(7):1365-72. PubMed ID: 10424457 [Abstract] [Full Text] [Related]
13. Ferguson plots based on absolute mobilities in polyacrylamide gel electrophoresis: dependence of linearity of polymerization conditions and application to the determination of free mobility. Butterman M, Tietz D, Orbán L, Chrambach A. Electrophoresis; 1988 Jul 01; 9(7):293-8. PubMed ID: 3234367 [Abstract] [Full Text] [Related]
14. Capabilities and potentialities of transverse pore gradient gel electrophoresis. Chrambach A, Wheeler DL. Electrophoresis; 1994 Jul 01; 15(8-9):1021-7. PubMed ID: 7859702 [Abstract] [Full Text] [Related]
15. On the "door-corridor" model of gel electrophoresis. I. Equations describing the relationship between mobility and size of DNA fragments and protein-SDS complexes. Kozulić B. Appl Theor Electrophor; 1994 Jul 01; 4(3):125-36. PubMed ID: 7612694 [Abstract] [Full Text] [Related]
16. The relative contributions of dispersion and diffusion to band spreading (resolution) in gel electrophoresis. Yarmola E, Sokoloff H, Chrambach A. Electrophoresis; 1996 Sep 01; 17(9):1416-9. PubMed ID: 8905256 [Abstract] [Full Text] [Related]
17. The distribution of particles characterized by size and free mobility within polydisperse populations of protein-polysaccharide conjugates, determined from two-dimensional agarose electropherograms. Tietz D, Aldroubi A, Schneerson R, Unser M, Chrambach A. Electrophoresis; 1991 Jan 01; 12(1):46-54. PubMed ID: 2050099 [Abstract] [Full Text] [Related]
18. A computer program for predicting recovery of SDS-protein in the automated HPGE-1000 apparatus. Aldroubi A, Zakharov SF, Chrambach A. Appl Theor Electrophor; 1995 Jan 01; 5(1):31-4. PubMed ID: 8534752 [Abstract] [Full Text] [Related]
19. Resolving power: a quantitative measure of electrophoretic resolution. Ribeiro EA, Sutherland JC. Anal Biochem; 1993 May 01; 210(2):378-88. PubMed ID: 8512074 [Abstract] [Full Text] [Related]
20. An exactly solvable Ogston model of gel electrophoresis IV: sieving through periodic three-dimensional gels. Mercier JF, Slater GW. Electrophoresis; 1998 Jul 01; 19(10):1560-5. PubMed ID: 9719525 [Abstract] [Full Text] [Related] Page: [Next] [New Search]