These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1096 related items for PubMed ID: 8599944

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y, Klostermeier D, Herrmann C, Veit T, Seidel R, Reinstein J.
    J Mol Biol; 2001 Feb 02; 305(5):1173-83. PubMed ID: 11162122
    [Abstract] [Full Text] [Related]

  • 3. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B.
    Mol Cell; 2008 Nov 07; 32(3):347-58. PubMed ID: 18995833
    [Abstract] [Full Text] [Related]

  • 4. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism.
    Packschies L, Theyssen H, Buchberger A, Bukau B, Goody RS, Reinstein J.
    Biochemistry; 1997 Mar 25; 36(12):3417-22. PubMed ID: 9131990
    [Abstract] [Full Text] [Related]

  • 5. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B.
    J Mol Biol; 1999 Jun 18; 289(4):1131-44. PubMed ID: 10369787
    [Abstract] [Full Text] [Related]

  • 6. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV, Sandmeier E, Baici A, Schönfeld HJ, Gisler S, Christen P.
    J Mol Biol; 1997 Jun 27; 269(5):757-68. PubMed ID: 9223639
    [Abstract] [Full Text] [Related]

  • 7. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D, Seidel R, Reinstein J.
    J Mol Biol; 1999 Apr 02; 287(3):511-25. PubMed ID: 10092456
    [Abstract] [Full Text] [Related]

  • 8. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA, Kwiatkowska JM, Lipińska B.
    Arch Microbiol; 2004 Dec 02; 182(6):436-49. PubMed ID: 15448982
    [Abstract] [Full Text] [Related]

  • 9. The Escherichia coli chaperones involved in DNA replication.
    Zylicz M.
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar 29; 339(1289):271-7; discussion 277-8. PubMed ID: 8098531
    [Abstract] [Full Text] [Related]

  • 10. The role of ATP in the functional cycle of the DnaK chaperone system.
    McCarty JS, Buchberger A, Reinstein J, Bukau B.
    J Mol Biol; 1995 May 26; 249(1):126-37. PubMed ID: 7776367
    [Abstract] [Full Text] [Related]

  • 11. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y, Reinstein J.
    J Mol Biol; 2001 Nov 16; 314(1):167-78. PubMed ID: 11724541
    [Abstract] [Full Text] [Related]

  • 12. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates.
    Russell R, Wali Karzai A, Mehl AF, McMacken R.
    Biochemistry; 1999 Mar 30; 38(13):4165-76. PubMed ID: 10194333
    [Abstract] [Full Text] [Related]

  • 13. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S, Goloubinoff P.
    Biochemistry; 1998 Jul 07; 37(27):9688-94. PubMed ID: 9657681
    [Abstract] [Full Text] [Related]

  • 14. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP, Siegenthaler RK, Züger S, Schönfeld HJ, Z'graggen BR, Christen P.
    J Mol Biol; 2005 Nov 04; 353(4):888-96. PubMed ID: 16198374
    [Abstract] [Full Text] [Related]

  • 15. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria.
    McCarty JS, Rüdiger S, Schönfeld HJ, Schneider-Mergener J, Nakahigashi K, Yura T, Bukau B.
    J Mol Biol; 1996 Mar 15; 256(5):829-37. PubMed ID: 8601834
    [Abstract] [Full Text] [Related]

  • 16. DnaJ potentiates the interaction between DnaK and alpha-helical peptides.
    de Crouy-Chanel A, Hodges RS, Kohiyama M, Richarme G.
    Biochem Biophys Res Commun; 1997 Apr 28; 233(3):627-30. PubMed ID: 9168902
    [Abstract] [Full Text] [Related]

  • 17. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32.
    Gamer J, Bujard H, Bukau B.
    Cell; 1992 May 29; 69(5):833-42. PubMed ID: 1534276
    [Abstract] [Full Text] [Related]

  • 18. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
    Arsène F, Tomoyasu T, Mogk A, Schirra C, Schulze-Specking A, Bukau B.
    J Bacteriol; 1999 Jun 29; 181(11):3552-61. PubMed ID: 10348869
    [Abstract] [Full Text] [Related]

  • 19. Interdomain communication in the molecular chaperone DnaK.
    Han W, Christen P.
    Biochem J; 2003 Feb 01; 369(Pt 3):627-34. PubMed ID: 12383055
    [Abstract] [Full Text] [Related]

  • 20. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.
    Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y, Kanemori M.
    J Bacteriol; 2004 Nov 01; 186(22):7474-80. PubMed ID: 15516558
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.