These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 8600506

  • 1. The combined effects of sublethal damage repair, cellular repopulation and redistribution in the mitotic cycle. I. Survival probabilities after exposure to radiation.
    Zaider M, Wuu CS, Minerbo GN.
    Radiat Res; 1996 Apr; 145(4):457-66. PubMed ID: 8600506
    [Abstract] [Full Text] [Related]

  • 2. The combined effects of sublethal damage repair, cellular repopulation and redistribution in the mitotic cycle. II. The dependency of radiosensitivity parameters alpha, beta and t(0) on biological age for Chinese hamster V79 cells.
    Zaider M.
    Radiat Res; 1996 Apr; 145(4):467-73. PubMed ID: 8600507
    [Abstract] [Full Text] [Related]

  • 3. Effects of cell cycle phase on low-dose hyper-radiosensitivity.
    Short SC, Woodcock M, Marples B, Joiner MC.
    Int J Radiat Biol; 2003 Feb; 79(2):99-105. PubMed ID: 12569013
    [Abstract] [Full Text] [Related]

  • 4. Radiosensitivity, apoptosis and repair of DNA double-strand breaks in radiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates.
    Hu Q, Hill RP.
    Radiat Res; 1996 Dec; 146(6):636-45. PubMed ID: 8955713
    [Abstract] [Full Text] [Related]

  • 5. Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tumor mammalian cells.
    Gorodetsky R, Levdansky L, Ringel I, Vexler A.
    Radiat Res; 1998 Sep; 150(3):283-91. PubMed ID: 9728657
    [Abstract] [Full Text] [Related]

  • 6. Resensitization due to redistribution of cells in the phases of the cell cycle during arbitrary radiation protocols.
    Hahnfeldt P, Hlatky L.
    Radiat Res; 1996 Feb; 145(2):134-43. PubMed ID: 8606922
    [Abstract] [Full Text] [Related]

  • 7. Cell-cycle-dependent recovery from heavy-ion damage in G1-phase cells.
    Blakely EA, Chang PY, Lommel L.
    Radiat Res Suppl; 1985 Feb; 8():S145-57. PubMed ID: 3867080
    [Abstract] [Full Text] [Related]

  • 8. The radiation hypersensitivity of cells at mitosis.
    Stobbe CC, Park SJ, Chapman JD.
    Int J Radiat Biol; 2002 Dec; 78(12):1149-57. PubMed ID: 12556342
    [Abstract] [Full Text] [Related]

  • 9. Dose-rate effects in mammalian cells. IV. Repairable and nonrepairable damage in noncycling C3H 10T 1/2 cells.
    Wells RL, Bedford JS.
    Radiat Res; 1983 Apr; 94(1):105-34. PubMed ID: 6856762
    [Abstract] [Full Text] [Related]

  • 10. Influence of cell cycle phase on radiation-induced cytotoxicity and DNA damage in human colon cancer (HT29) and Chinese hamster ovary cells.
    Tang H, Davis MA, Strickfaden SM, Maybaum J, Lawrence TS.
    Radiat Res; 1994 Apr; 138(1 Suppl):S109-12. PubMed ID: 8146311
    [Abstract] [Full Text] [Related]

  • 11. Paclitaxel and radiotherapy: sequence-dependent efficacy--a preclinical model.
    Niero A, Emiliani E, Monti G, Pironi F, Turci L, Valenti AM, Marangolo M.
    Clin Cancer Res; 1999 Aug; 5(8):2213-22. PubMed ID: 10473108
    [Abstract] [Full Text] [Related]

  • 12. A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division.
    Dillehay LE.
    Radiat Res; 1990 Nov; 124(2):201-7. PubMed ID: 2247600
    [Abstract] [Full Text] [Related]

  • 13. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair.
    Rowley R, Leeper DB.
    Radiat Res; 1985 Sep; 103(3):326-36. PubMed ID: 4041062
    [Abstract] [Full Text] [Related]

  • 14. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene.
    Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ.
    Cancer Res; 1999 Mar 15; 59(6):1347-55. PubMed ID: 10096569
    [Abstract] [Full Text] [Related]

  • 15. A simple model of radiation action in cells based on a repair saturation mechanism.
    Sánchez-Reyes A.
    Radiat Res; 1992 May 15; 130(2):139-47. PubMed ID: 1574569
    [Abstract] [Full Text] [Related]

  • 16. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines.
    Aldridge DR, Radford IR.
    Cancer Res; 1998 Jul 01; 58(13):2817-24. PubMed ID: 9661896
    [Abstract] [Full Text] [Related]

  • 17. A convenient extension of the linear-quadratic model to include redistribution and reoxygenation.
    Brenner DJ, Hlatky LR, Hahnfeldt PJ, Hall EJ, Sachs RK.
    Int J Radiat Oncol Biol Phys; 1995 May 15; 32(2):379-90. PubMed ID: 7751180
    [Abstract] [Full Text] [Related]

  • 18. A mathematical model for cell cycle progression under continuous low-dose-rate irradiation.
    Zaider M, Minerbo GN.
    Radiat Res; 1993 Jan 15; 133(1):20-6. PubMed ID: 8434109
    [Abstract] [Full Text] [Related]

  • 19. Dose fractionation effects in plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts.
    Zeman EM, Bedford JS.
    Radiat Res; 1985 Feb 15; 101(2):373-93. PubMed ID: 3975362
    [Abstract] [Full Text] [Related]

  • 20. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles.
    Biade S, Stobbe CC, Chapman JD.
    Radiat Res; 1997 Apr 15; 147(4):416-21. PubMed ID: 9092920
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.