These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
344 related items for PubMed ID: 8601834
1. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS, Rüdiger S, Schönfeld HJ, Schneider-Mergener J, Nakahigashi K, Yura T, Bukau B. J Mol Biol; 1996 Mar 15; 256(5):829-37. PubMed ID: 8601834 [Abstract] [Full Text] [Related]
2. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F, Tomoyasu T, Mogk A, Schirra C, Schulze-Specking A, Bukau B. J Bacteriol; 1999 Jun 15; 181(11):3552-61. PubMed ID: 10348869 [Abstract] [Full Text] [Related]
3. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B. EMBO J; 1996 Feb 01; 15(3):607-17. PubMed ID: 8599944 [Abstract] [Full Text] [Related]
4. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T, Ogura T, Tatsuta T, Bukau B. Mol Microbiol; 1998 Nov 01; 30(3):567-81. PubMed ID: 9822822 [Abstract] [Full Text] [Related]
5. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Mol Cell; 2008 Nov 07; 32(3):347-58. PubMed ID: 18995833 [Abstract] [Full Text] [Related]
6. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J, Newton A. J Bacteriol; 1996 Apr 07; 178(7):2094-101. PubMed ID: 8606189 [Abstract] [Full Text] [Related]
7. The heat shock response of Escherichia coli. Arsène F, Tomoyasu T, Bukau B. Int J Food Microbiol; 2000 Apr 10; 55(1-3):3-9. PubMed ID: 10791710 [Abstract] [Full Text] [Related]
8. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. Suzuki H, Ikeda A, Tsuchimoto S, Adachi K, Noguchi A, Fukumori Y, Kanemori M. J Biol Chem; 2012 Jun 01; 287(23):19275-83. PubMed ID: 22496372 [Abstract] [Full Text] [Related]
9. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C, Koby S, Oppenheim AB, Münchbach M, Hennecke H, Narberhaus F. Eur J Biochem; 2000 Aug 01; 267(15):4831-9. PubMed ID: 10903518 [Abstract] [Full Text] [Related]
10. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F. Microbiology (Reading); 2007 Aug 01; 153(Pt 8):2560-2571. PubMed ID: 17660420 [Abstract] [Full Text] [Related]
11. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. Nakahigashi K, Yanagi H, Yura T. J Bacteriol; 2001 Sep 01; 183(18):5302-10. PubMed ID: 11514513 [Abstract] [Full Text] [Related]
12. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y, Kanemori M. J Bacteriol; 2004 Nov 01; 186(22):7474-80. PubMed ID: 15516558 [Abstract] [Full Text] [Related]
13. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. J Biol Chem; 2016 Mar 25; 291(13):6967-81. PubMed ID: 26823468 [Abstract] [Full Text] [Related]
14. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A, Mohr CD, Shapiro L. J Bacteriol; 1996 Apr 25; 178(7):1919-27. PubMed ID: 8606166 [Abstract] [Full Text] [Related]
15. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Gamer J, Bujard H, Bukau B. Cell; 1992 May 29; 69(5):833-42. PubMed ID: 1534276 [Abstract] [Full Text] [Related]
16. Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Klein G, Zmijewski M, Krzewska J, Czeczatka M, Lipińska B. Mol Gen Genet; 1998 Aug 29; 259(2):179-89. PubMed ID: 9747709 [Abstract] [Full Text] [Related]
17. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T. Mol Microbiol; 1998 Nov 29; 30(3):583-93. PubMed ID: 9822823 [Abstract] [Full Text] [Related]
18. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. Noguchi A, Ikeda A, Mezaki M, Fukumori Y, Kanemori M. J Bacteriol; 2014 May 29; 196(9):1694-703. PubMed ID: 24532774 [Abstract] [Full Text] [Related]
19. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus. Osipiuk J, Joachimiak A. Biochim Biophys Acta; 1997 Sep 12; 1353(3):253-65. PubMed ID: 9349721 [Abstract] [Full Text] [Related]
20. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ. Goffin L, Georgopoulos C. Mol Microbiol; 1998 Oct 12; 30(2):329-40. PubMed ID: 9791178 [Abstract] [Full Text] [Related] Page: [Next] [New Search]