These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 8601834

  • 41. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32).
    Tatsuta T, Joob DM, Calendar R, Akiyama Y, Ogura T.
    FEBS Lett; 2000 Aug 04; 478(3):271-5. PubMed ID: 10930581
    [Abstract] [Full Text] [Related]

  • 42. The C terminus of sigma(32) is not essential for degradation by FtsH.
    Tomoyasu T, Arsène F, Ogura T, Bukau B.
    J Bacteriol; 2001 Oct 04; 183(20):5911-7. PubMed ID: 11566990
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA, Kwiatkowska JM, Lipińska B.
    Arch Microbiol; 2004 Dec 04; 182(6):436-49. PubMed ID: 15448982
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Characterization of stress-responsive genes, hrcA-grpE-dnaK-dnaJ, from phytopathogenic Xanthomonas campestris.
    Weng SF, Tai PM, Yang CH, Wu CD, Tsai WJ, Lin JW, Tseng YH.
    Arch Microbiol; 2001 Jul 04; 176(1-2):121-8. PubMed ID: 11479711
    [Abstract] [Full Text] [Related]

  • 47. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B.
    J Mol Biol; 1999 Jun 18; 289(4):1131-44. PubMed ID: 10369787
    [Abstract] [Full Text] [Related]

  • 48. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T, Tsuruno K, Tanatsugu R, Miyazaki A, Kondo H, Tabata A, Whiley RA, Sonomoto K, Nagamune H.
    Microbiol Immunol; 2018 Nov 18; 62(11):681-693. PubMed ID: 30239035
    [Abstract] [Full Text] [Related]

  • 49. Analysis of a Coxiella burnetti gene product that activates capsule synthesis in Escherichia coli: requirement for the heat shock chaperone DnaK and the two-component regulator RcsC.
    Zuber M, Hoover TA, Court DL.
    J Bacteriol; 1995 Aug 18; 177(15):4238-44. PubMed ID: 7635811
    [Abstract] [Full Text] [Related]

  • 50. Purification and biochemical characterization of DnaK and its transcriptional activator RpoH from Neisseria gonorrhoeae.
    Narayanan S, Beckham SA, Davies JK, Roujeinikova A.
    Mol Biol Rep; 2014 Dec 18; 41(12):7945-53. PubMed ID: 25156536
    [Abstract] [Full Text] [Related]

  • 51. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.
    Kourennaia OV, Tsujikawa L, Dehaseth PL.
    J Bacteriol; 2005 Oct 18; 187(19):6762-9. PubMed ID: 16166539
    [Abstract] [Full Text] [Related]

  • 52. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins.
    Liberek K, Georgopoulos C.
    Proc Natl Acad Sci U S A; 1993 Dec 01; 90(23):11019-23. PubMed ID: 8248205
    [Abstract] [Full Text] [Related]

  • 53. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter.
    Wu J, Newton A.
    J Bacteriol; 1997 Jan 01; 179(2):514-21. PubMed ID: 8990305
    [Abstract] [Full Text] [Related]

  • 54. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex.
    Kallipolitis BH, Valentin-Hansen P.
    Mol Microbiol; 1998 Aug 01; 29(4):1091-9. PubMed ID: 9767576
    [Abstract] [Full Text] [Related]

  • 55. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K, Galitski TP, Zylicz M, Georgopoulos C.
    Proc Natl Acad Sci U S A; 1992 Apr 15; 89(8):3516-20. PubMed ID: 1565647
    [Abstract] [Full Text] [Related]

  • 56. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease.
    Bertani D, Oppenheim AB, Narberhaus F.
    FEBS Lett; 2001 Mar 23; 493(1):17-20. PubMed ID: 11277997
    [Abstract] [Full Text] [Related]

  • 57. In vivo effect of DNA relaxation on the transcription of gene rpoH in Escherichia coli.
    López-Sánchez F, Ramírez-Santos J, Gómez-Eichelmann MC.
    Biochim Biophys Acta; 1997 Jul 17; 1353(1):79-83. PubMed ID: 9256067
    [Abstract] [Full Text] [Related]

  • 58. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock.
    Chakraborty A, Mukherjee S, Chattopadhyay R, Roy S, Chakrabarti S.
    J Phys Chem B; 2014 May 08; 118(18):4793-802. PubMed ID: 24766146
    [Abstract] [Full Text] [Related]

  • 59. Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite -10 region with an 'extended -10' motif and a core -10 element.
    Koo BM, Rhodius VA, Campbell EA, Gross CA.
    Mol Microbiol; 2009 May 08; 72(4):815-29. PubMed ID: 19400791
    [Abstract] [Full Text] [Related]

  • 60. Multiple regions on the Escherichia coli heat shock transcription factor sigma32 determine core RNA polymerase binding specificity.
    Joo DM, Nolte A, Calendar R, Zhou YN, Jin DJ.
    J Bacteriol; 1998 Mar 08; 180(5):1095-102. PubMed ID: 9495746
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.