These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 8602140

  • 1. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose.
    Schmiedel D, Hillen W.
    Mol Gen Genet; 1996 Feb 25; 250(3):259-66. PubMed ID: 8602140
    [Abstract] [Full Text] [Related]

  • 2. Catabolite repression of the xyl operon in Bacillus megaterium.
    Rygus T, Hillen W.
    J Bacteriol; 1992 May 25; 174(9):3049-55. PubMed ID: 1569031
    [Abstract] [Full Text] [Related]

  • 3. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization.
    Rygus T, Scheler A, Allmansberger R, Hillen W.
    Arch Microbiol; 1991 May 25; 155(6):535-42. PubMed ID: 1719948
    [Abstract] [Full Text] [Related]

  • 4. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium.
    Schmiedel D, Kintrup M, Küster E, Hillen W.
    Mol Microbiol; 1997 Mar 25; 23(5):1053-62. PubMed ID: 9076741
    [Abstract] [Full Text] [Related]

  • 5. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression.
    Kraus A, Hueck C, Gärtner D, Hillen W.
    J Bacteriol; 1994 Mar 25; 176(6):1738-45. PubMed ID: 8132469
    [Abstract] [Full Text] [Related]

  • 6. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization.
    Scheler A, Rygus T, Allmansberger R, Hillen W.
    Arch Microbiol; 1991 Mar 25; 155(6):526-34. PubMed ID: 1953294
    [Abstract] [Full Text] [Related]

  • 7. Regulation of expression of the Lactobacillus pentosus xylAB operon.
    Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW, Pouwels PH.
    J Bacteriol; 1997 Sep 25; 179(17):5391-7. PubMed ID: 9286992
    [Abstract] [Full Text] [Related]

  • 8. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium.
    Hueck CJ, Kraus A, Schmiedel D, Hillen W.
    Mol Microbiol; 1995 Jun 25; 16(5):855-64. PubMed ID: 7476184
    [Abstract] [Full Text] [Related]

  • 9. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose.
    Gärtner D, Geissendörfer M, Hillen W.
    J Bacteriol; 1988 Jul 25; 170(7):3102-9. PubMed ID: 2454911
    [Abstract] [Full Text] [Related]

  • 10. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame.
    Jacob S, Allmansberger R, Gärtner D, Hillen W.
    Mol Gen Genet; 1991 Oct 25; 229(2):189-96. PubMed ID: 1921970
    [Abstract] [Full Text] [Related]

  • 11. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon.
    Rygus T, Hillen W.
    Appl Microbiol Biotechnol; 1991 Aug 25; 35(5):594-9. PubMed ID: 1367576
    [Abstract] [Full Text] [Related]

  • 12. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R, Küster E, Galinier A, Deutscher J, Hillen W.
    J Mol Biol; 1997 Mar 07; 266(4):665-76. PubMed ID: 9102460
    [Abstract] [Full Text] [Related]

  • 13. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization.
    Dahl MK, Schmiedel D, Hillen W.
    J Bacteriol; 1995 Oct 07; 177(19):5467-72. PubMed ID: 7559331
    [Abstract] [Full Text] [Related]

  • 14. Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24.
    Heo GY, Kim WC, Joo GJ, Kwak YY, Shin JH, Roh DH, Park HD, Rhee IK.
    J Microbiol Biotechnol; 2008 May 07; 18(5):837-44. PubMed ID: 18633279
    [Abstract] [Full Text] [Related]

  • 15. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV, Pettengill FK, Fisher SH.
    J Bacteriol; 1994 Apr 07; 176(7):1894-902. PubMed ID: 8144455
    [Abstract] [Full Text] [Related]

  • 16. Sequencing and characterization of the xyl operon of a gram-positive bacterium, Tetragenococcus halophila.
    Takeda Y, Takase K, Yamato I, Abe K.
    Appl Environ Microbiol; 1998 Jul 07; 64(7):2513-9. PubMed ID: 9647823
    [Abstract] [Full Text] [Related]

  • 17. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon.
    Sizemore C, Buchner E, Rygus T, Witke C, Götz F, Hillen W.
    Mol Gen Genet; 1991 Jul 07; 227(3):377-84. PubMed ID: 1714034
    [Abstract] [Full Text] [Related]

  • 18. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator.
    Song S, Park C.
    J Bacteriol; 1997 Nov 07; 179(22):7025-32. PubMed ID: 9371449
    [Abstract] [Full Text] [Related]

  • 19. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression.
    Küster E, Hilbich T, Dahl MK, Hillen W.
    J Bacteriol; 1999 Jul 07; 181(13):4125-8. PubMed ID: 10383986
    [Abstract] [Full Text] [Related]

  • 20. Cloning and characterization of the xyl genes from Escherichia coli.
    Rosenfeld SA, Stevis PE, Ho NW.
    Mol Gen Genet; 1984 Jul 07; 194(3):410-5. PubMed ID: 6330500
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.