These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 8602845
1. HIV-1 RT enhances the activity of a tethered dimer of HIV-1 proteinase. Goobar-Larsson L, Larsson PT, Debouck C, Towler EM. Biochem Biophys Res Commun; 1996 Mar 07; 220(1):203-7. PubMed ID: 8602845 [Abstract] [Full Text] [Related]
2. Enhancement of HIV-1 proteinase activity by HIV-1 reverse transcriptase. Goobar-Larsson L, Luukkonen BG, Unge T, Schwartz S, Utter G, Strandberg B, Oberg B. Virology; 1995 Jan 10; 206(1):387-94. PubMed ID: 7530393 [Abstract] [Full Text] [Related]
3. Kinetic assay for HIV proteinase subunit dissociation. Kuzmic P. Biochem Biophys Res Commun; 1993 Mar 31; 191(3):998-1003. PubMed ID: 8466539 [Abstract] [Full Text] [Related]
4. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis. Strisovsky K, Tessmer U, Langner J, Konvalinka J, Kräusslich HG. Protein Sci; 2000 Sep 31; 9(9):1631-41. PubMed ID: 11045610 [Abstract] [Full Text] [Related]
5. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L, Bäckbro K, Unge T, Bhikhabhai R, Vrang L, Zhang H, Orvell C, Strandberg B, Oberg B. Virology; 1993 Oct 31; 196(2):731-8. PubMed ID: 7690504 [Abstract] [Full Text] [Related]
6. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Louis JM, Clore GM, Gronenborn AM. Nat Struct Biol; 1999 Sep 31; 6(9):868-75. PubMed ID: 10467100 [Abstract] [Full Text] [Related]
7. A drug resistance mutation in the inhibitor binding pocket of human immunodeficiency virus type 1 reverse transcriptase impairs DNA synthesis and RNA degradation. Fan N, Rank KB, Slade DE, Poppe SM, Evans DB, Kopta LA, Olmsted RA, Thomas RC, Tarpley WG, Sharma SK. Biochemistry; 1996 Jul 30; 35(30):9737-45. PubMed ID: 8703945 [Abstract] [Full Text] [Related]
8. Stabilization of HIV proteinase dimer by bound substrate. Kuzmic P, García-Echeverría C, Rich DH. Biochem Biophys Res Commun; 1993 Jul 15; 194(1):301-5. PubMed ID: 8333844 [Abstract] [Full Text] [Related]
9. Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non-nucleoside RT inhibitors. Auwerx J, Esnouf R, De Clercq E, Balzarini J. Mol Pharmacol; 2004 Jan 15; 65(1):244-51. PubMed ID: 14722257 [Abstract] [Full Text] [Related]
10. Evaluation of human immunodeficiency virus type 1 reverse transcriptase primer tRNA binding by fluorescence spectroscopy: specificity and comparison to primer/template binding. Thrall SH, Reinstein J, Wöhrl BM, Goody RS. Biochemistry; 1996 Apr 09; 35(14):4609-18. PubMed ID: 8605212 [Abstract] [Full Text] [Related]
11. Characterization of the p68/p58 heterodimer of human immunodeficiency virus type 2 reverse transcriptase. Fan N, Rank KB, Poppe SM, Tarpley WG, Sharma SK. Biochemistry; 1996 Feb 13; 35(6):1911-7. PubMed ID: 8639674 [Abstract] [Full Text] [Related]
12. [Mechanism of action of aspartic proteinases. 2. Conformational possibilities of an HIV-1 proteinase substrate]. Popov ME, Kashparov IV, Popov EM. Bioorg Khim; 1996 Jul 13; 22(7):510-22. PubMed ID: 8992956 [Abstract] [Full Text] [Related]
13. A heterologous substrate assay for the HIV-1 protease engineered in Escherichia coli. Stebbins J, Deckman IC, Richardson SB, Debouck C. Anal Biochem; 1996 Nov 01; 242(1):90-4. PubMed ID: 8923970 [Abstract] [Full Text] [Related]
14. Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis. Pandey VN, Kaushik N, Rege N, Sarafianos SG, Yadav PN, Modak MJ. Biochemistry; 1996 Feb 20; 35(7):2168-79. PubMed ID: 8652558 [Abstract] [Full Text] [Related]
15. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. Gao HQ, Sarafianos SG, Arnold E, Hughes SH. J Mol Biol; 1999 Dec 17; 294(5):1097-113. PubMed ID: 10600369 [Abstract] [Full Text] [Related]
16. HIV-1 reverse transcriptase shows no specificity for the binding of primer tRNA(Lys3). Arion D, Harada R, Li X, Wainberg MA, Parniak MA. Biochem Biophys Res Commun; 1996 Aug 23; 225(3):839-43. PubMed ID: 8780699 [Abstract] [Full Text] [Related]
17. Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. Wapling J, Moore KL, Sonza S, Mak J, Tachedjian G. J Virol; 2005 Aug 23; 79(16):10247-57. PubMed ID: 16051818 [Abstract] [Full Text] [Related]
18. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles. Navarro JM, Damier L, Boretto J, Priet S, Canard B, Quérat G, Sire J. Virology; 2001 Nov 25; 290(2):300-8. PubMed ID: 11883194 [Abstract] [Full Text] [Related]
19. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. Pietrucci F, Marinelli F, Carloni P, Laio A. J Am Chem Soc; 2009 Aug 26; 131(33):11811-8. PubMed ID: 19645490 [Abstract] [Full Text] [Related]
20. Role of glutamine-151 of human immunodeficiency virus type-1 reverse transcriptase in RNA-directed DNA synthesis. Kaushik N, Harris D, Rege N, Modak MJ, Yadav PN, Pandey VN. Biochemistry; 1997 Nov 25; 36(47):14430-8. PubMed ID: 9398161 [Abstract] [Full Text] [Related] Page: [Next] [New Search]