These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 8604141
1. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 A resolution. Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F. J Mol Biol; 1996 Mar 01; 256(3):590-600. PubMed ID: 8604141 [Abstract] [Full Text] [Related]
2. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution. Nikkola M, Lindqvist Y, Schneider G. J Mol Biol; 1994 May 06; 238(3):387-404. PubMed ID: 8176731 [Abstract] [Full Text] [Related]
3. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Guo F, Zhang D, Kahyaoglu A, Farid RS, Jordan F. Biochemistry; 1998 Sep 22; 37(38):13379-91. PubMed ID: 9748345 [Abstract] [Full Text] [Related]
4. The reaction of dimethyltin(IV) dichloride with thiamine diphosphate (H2TDP): synthesis and structure of [SnMe2(HTDP)(H2O)]Cl.H2O, and possibility of a hitherto unsuspected role of the metal cofactor in the mechanism of vitamin-B1-dependent enzymes. Casas JS, Castellano EE, Couce MD, Ellena J, Sánchez A, Sánchez JL, Sordo J, Taboada C. Inorg Chem; 2004 Mar 22; 43(6):1957-63. PubMed ID: 15018516 [Abstract] [Full Text] [Related]
5. The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA, Ringe D. Biochemistry; 1998 Jul 14; 37(28):9918-30. PubMed ID: 9665697 [Abstract] [Full Text] [Related]
6. Remarkable stabilization of zwitterionic intermediates may account for a billion-fold rate acceleration by thiamin diphosphate-dependent decarboxylases. Jordan F, Li H, Brown A. Biochemistry; 1999 May 18; 38(20):6369-73. PubMed ID: 10350453 [Abstract] [Full Text] [Related]
9. The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. Kutter S, Wille G, Relle S, Weiss MS, Hübner G, König S. FEBS J; 2006 Sep 18; 273(18):4199-209. PubMed ID: 16939618 [Abstract] [Full Text] [Related]
12. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Muller YA, Lindqvist Y, Furey W, Schulz GE, Jordan F, Schneider G. Structure; 1993 Oct 15; 1(2):95-103. PubMed ID: 8069629 [Abstract] [Full Text] [Related]
16. Crystal structure of thiamin phosphate synthase from Bacillus subtilis at 1.25 A resolution. Chiu HJ, Reddick JJ, Begley TP, Ealick SE. Biochemistry; 1999 May 18; 38(20):6460-70. PubMed ID: 10350464 [Abstract] [Full Text] [Related]
17. Multiple modes of active center communication in thiamin diphosphate-dependent enzymes. Jordan F, Nemeria NS, Sergienko E. Acc Chem Res; 2005 Sep 18; 38(9):755-63. PubMed ID: 16171318 [Abstract] [Full Text] [Related]
20. Function of a conserved loop of the beta-domain, not involved in thiamin diphosphate binding, in catalysis and substrate activation in yeast pyruvate decarboxylase. Joseph E, Wei W, Tittmann K, Jordan F. Biochemistry; 2006 Nov 14; 45(45):13517-27. PubMed ID: 17087505 [Abstract] [Full Text] [Related] Page: [Next] [New Search]