These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 8604145

  • 1. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T, Argos P.
    J Mol Biol; 1996 Mar 01; 256(3):645-60. PubMed ID: 8604145
    [Abstract] [Full Text] [Related]

  • 2. Folding the main chain of small proteins with the genetic algorithm.
    Dandekar T, Argos P.
    J Mol Biol; 1994 Feb 25; 236(3):844-61. PubMed ID: 8114098
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR, Kolinski A, Skolnick J.
    J Mol Biol; 1998 Mar 27; 277(2):419-48. PubMed ID: 9514747
    [Abstract] [Full Text] [Related]

  • 5. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification.
    Wojcik J, Mornon JP, Chomilier J.
    J Mol Biol; 1999 Jun 25; 289(5):1469-90. PubMed ID: 10373380
    [Abstract] [Full Text] [Related]

  • 6. Protein fold recognition by mapping predicted secondary structures.
    Russell RB, Copley RR, Barton GJ.
    J Mol Biol; 1996 Jun 14; 259(3):349-65. PubMed ID: 8676374
    [Abstract] [Full Text] [Related]

  • 7. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR, Kolinski A, Skolnick J.
    Pac Symp Biocomput; 1998 Jun 14; ():377-88. PubMed ID: 9697197
    [Abstract] [Full Text] [Related]

  • 8. Protein tertiary structure prediction using a branch and bound algorithm.
    Eyrich VA, Standley DM, Felts AK, Friesner RA.
    Proteins; 1999 Apr 01; 35(1):41-57. PubMed ID: 10090285
    [Abstract] [Full Text] [Related]

  • 9. MONSSTER: a method for folding globular proteins with a small number of distance restraints.
    Skolnick J, Kolinski A, Ortiz AR.
    J Mol Biol; 1997 Jan 17; 265(2):217-41. PubMed ID: 9020984
    [Abstract] [Full Text] [Related]

  • 10. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A, Bagchi B.
    J Chem Phys; 2004 Jan 15; 120(3):1602-12. PubMed ID: 15268287
    [Abstract] [Full Text] [Related]

  • 11. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V, Garnier J, Munson PJ.
    J Mol Biol; 1997 Mar 28; 267(2):446-63. PubMed ID: 9096237
    [Abstract] [Full Text] [Related]

  • 12. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ, Park J.
    Proteins; 1995 Nov 28; 23(3):398-402. PubMed ID: 8710832
    [Abstract] [Full Text] [Related]

  • 13. A fast method to sample real protein conformational space.
    Feldman HJ, Hogue CW.
    Proteins; 2000 May 01; 39(2):112-31. PubMed ID: 10737933
    [Abstract] [Full Text] [Related]

  • 14. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K, Kurgan L.
    Bioinformatics; 2007 Nov 01; 23(21):2843-50. PubMed ID: 17942446
    [Abstract] [Full Text] [Related]

  • 15. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A, Costantini S, di Serafino D, D'Apuzzo M, Facchiano A, Colonna G.
    Comput Biol Chem; 2008 Aug 01; 32(4):233-9. PubMed ID: 18479970
    [Abstract] [Full Text] [Related]

  • 16. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A, Skolnick J.
    Proteins; 1998 Sep 01; 32(4):475-94. PubMed ID: 9726417
    [Abstract] [Full Text] [Related]

  • 17. A novel fold recognition method using composite predicted secondary structures.
    An Y, Friesner RA.
    Proteins; 2002 Aug 01; 48(2):352-66. PubMed ID: 12112702
    [Abstract] [Full Text] [Related]

  • 18. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW, Eisenberg D.
    J Mol Biol; 1997 Apr 11; 267(4):1026-38. PubMed ID: 9135128
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.