These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 8605038

  • 1. Superoxide anion reduces the ability of myeloperoxidase to damage lipids.
    Iwase H, Takatori T, Nagao M, Iwadate K, Takahashi M, Nakajima M, Takahashi T, Shimizu T.
    Biochem Biophys Res Commun; 1996 Feb 15; 219(2):625-32. PubMed ID: 8605038
    [Abstract] [Full Text] [Related]

  • 2. Establishment of a monoepoxide (leukotoxin and its isomer) producing system using a hydrogen peroxide-generating system.
    Iwase H, Takatori T, Aono K, Iwadate K, Takahashi M, Nakajima M, Nagao M.
    Biochem Biophys Res Commun; 1995 Nov 13; 216(2):483-8. PubMed ID: 7488137
    [Abstract] [Full Text] [Related]

  • 3. Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction.
    Olsson GM, Svensson I, Zdolsek JM, Brunk UT.
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989 Nov 13; 56(6):385-91. PubMed ID: 2567086
    [Abstract] [Full Text] [Related]

  • 4. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings.
    Dowell FJ, Hamilton CA, McMurray J, Reid JL.
    J Cardiovasc Pharmacol; 1993 Dec 13; 22(6):792-7. PubMed ID: 7509895
    [Abstract] [Full Text] [Related]

  • 5. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid.
    Kettle AJ, Winterbourn CC.
    Biochem J; 1988 Jun 01; 252(2):529-36. PubMed ID: 2843172
    [Abstract] [Full Text] [Related]

  • 6. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
    Mian KB, Martin W.
    Br J Pharmacol; 1995 Jul 01; 115(6):993-1000. PubMed ID: 7582532
    [Abstract] [Full Text] [Related]

  • 7. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells.
    Dreher D, Junod AF.
    J Cell Physiol; 1995 Jan 01; 162(1):147-53. PubMed ID: 7814447
    [Abstract] [Full Text] [Related]

  • 8. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA, Rubbo H, Prodanov E.
    Biochim Biophys Acta; 1989 Jan 19; 994(1):89-93. PubMed ID: 2535790
    [Abstract] [Full Text] [Related]

  • 9. The effects of "oxygen radicals" generated in the medium on lenses in organ culture: inhibition of damage by chelated iron.
    Zigler JS, Jernigan HM, Garland D, Reddy VN.
    Arch Biochem Biophys; 1985 Aug 15; 241(1):163-72. PubMed ID: 2992388
    [Abstract] [Full Text] [Related]

  • 10. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride.
    Winterbourn CC, Garcia RC, Segal AW.
    Biochem J; 1985 Jun 15; 228(3):583-92. PubMed ID: 2992450
    [Abstract] [Full Text] [Related]

  • 11. Induction of chromosomal aberrations in active oxygen-generating systems. II. A study with hydrogen peroxide-resistant cells in culture.
    Sawada M, Sofuni T, Ishidate M.
    Mutat Res; 1988 Jan 15; 197(1):133-40. PubMed ID: 2827017
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of nitric oxide synthase by a superoxide generating system.
    Rengasamy A, Johns RA.
    J Pharmacol Exp Ther; 1993 Dec 15; 267(3):1024-7. PubMed ID: 7505325
    [Abstract] [Full Text] [Related]

  • 13. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
    Lynch SM, Frei B.
    J Lipid Res; 1993 Oct 15; 34(10):1745-53. PubMed ID: 8245725
    [Abstract] [Full Text] [Related]

  • 14. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase.
    Kettle AJ, Gedye CA, Winterbourn CC.
    Biochem Pharmacol; 1993 May 25; 45(10):2003-10. PubMed ID: 8390258
    [Abstract] [Full Text] [Related]

  • 15. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes.
    Rosen H, Klebanoff SJ.
    J Clin Invest; 1976 Jul 25; 58(1):50-60. PubMed ID: 180060
    [Abstract] [Full Text] [Related]

  • 16. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H, Klebanoff SJ.
    J Exp Med; 1979 Jan 01; 149(1):27-39. PubMed ID: 216766
    [Abstract] [Full Text] [Related]

  • 17. Induction of chromosomal aberrations in cultured Chinese hamster cells in a superoxide-generating system.
    Sofuni T, Ishidate M.
    Mutat Res; 1984 May 01; 140(1):27-31. PubMed ID: 6330545
    [Abstract] [Full Text] [Related]

  • 18. Superoxide-dependent reduction of some simple low molecular mass iron complexes.
    Gutteridge JM.
    J Trace Elem Electrolytes Health Dis; 1991 Dec 01; 5(4):271-2. PubMed ID: 1668318
    [Abstract] [Full Text] [Related]

  • 19. Xanthine oxidase inhibits transmembrane signal transduction in vascular endothelial cells.
    Wesson DE, Elliott SJ.
    J Pharmacol Exp Ther; 1994 Sep 01; 270(3):1197-207. PubMed ID: 7932172
    [Abstract] [Full Text] [Related]

  • 20. Cytotoxicity of the hypoxanthine-xanthine oxidase system on V79 cells: comparison of the effects of SOD and CuDIPS.
    Tachon P.
    Free Radic Res Commun; 1989 Sep 01; 7(3-6):367-74. PubMed ID: 2583553
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.