These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
100 related items for PubMed ID: 8605586
1. Mechanism of anti-HIV activity of negatively charged albumins: biomolecular interaction with the HIV-1 envelope protein gp120. Kuipers ME, Huisman JG, Swart PJ, de Béthune MP, Pauwels R, Schuitemaker H, De Clercq E, Meijer DK. J Acquir Immune Defic Syndr Hum Retrovirol; 1996 Apr 15; 11(5):419-29. PubMed ID: 8605586 [Abstract] [Full Text] [Related]
2. Mechanism of anti-HIV activity of succinylated human serum albumin. Kuipers ME, vd Berg M, Swart PJ, Laman JD, Meijer DK, Koppelman MH, Huisman H. Biochem Pharmacol; 1999 Apr 15; 57(8):889-98. PubMed ID: 10086322 [Abstract] [Full Text] [Related]
3. Novel, negatively charged, human serum albumins display potent and selective in vitro anti-human immunodeficiency virus type 1 activity. Jansen RW, Schols D, Pauwels R, De Clercq E, Meijer DK. Mol Pharmacol; 1993 Nov 15; 44(5):1003-7. PubMed ID: 7902528 [Abstract] [Full Text] [Related]
4. Resistance of the human immunodeficiency virus to the inhibitory action of negatively charged albumins on virus binding to CD4. Cabrera C, Witvrouw M, Gutiérrez A, Clotet B, Kuipers ME, Swart PJ, Meijer DK, Desmyter J, De Clercq E, Esté JA. AIDS Res Hum Retroviruses; 1999 Nov 20; 15(17):1535-43. PubMed ID: 10580404 [Abstract] [Full Text] [Related]
5. The influence of charge clustering on the anti-HIV-1 activity and in vivo distribution of negatively charged albumins. Beljaars L, Floris R, Berkhout B, Smit C, Meijer DK, Molema G. Biochem Pharmacol; 2002 May 01; 63(9):1663-73. PubMed ID: 12007569 [Abstract] [Full Text] [Related]
6. Structural requirements for and consequences of an antiviral porphyrin binding to the V3 loop of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120. Neurath AR, Strick N, Debnath AK. J Mol Recognit; 1995 May 01; 8(6):345-57. PubMed ID: 9052975 [Abstract] [Full Text] [Related]
7. Three-dimensional structure-activity analysis of a series of porphyrin derivatives with anti-HIV-1 activity targeted to the V3 loop of the gp120 envelope glycoprotein of the human immunodeficiency virus type 1. Debnath AK, Jiang S, Strick N, Lin K, Haberfield P, Neurath AR. J Med Chem; 1994 Apr 15; 37(8):1099-108. PubMed ID: 8164251 [Abstract] [Full Text] [Related]
8. Potent in vitro anti-human immunodeficiency virus-1 activity of modified human serum albumins. Jansen RW, Molema G, Pauwels R, Schols D, De Clercq E, Meijer DK. Mol Pharmacol; 1991 Jun 15; 39(6):818-23. PubMed ID: 2051994 [Abstract] [Full Text] [Related]
9. Single basic amino acid substitutions at position 302 or 320 in the V3 domain of HIV type 1 are not sufficient to alter the antiviral activity of dextran sulfate and heparin. Okada T, Gurney ME. AIDS Res Hum Retroviruses; 1995 May 15; 11(5):571-5. PubMed ID: 7576913 [Abstract] [Full Text] [Related]
10. Heparin and its derivatives bind to HIV-1 recombinant envelope glycoproteins, rather than to recombinant HIV-1 receptor, CD4. Harrop HA, Rider CC. Glycobiology; 1998 Feb 15; 8(2):131-7. PubMed ID: 9451022 [Abstract] [Full Text] [Related]
11. Anti-HIV-1 activity of combinations and covalent conjugates of negatively charged human serum albumins (NCAs) and AZT. Kuipers ME, Swart PJ, Witvrouw M, Esté JA, Reymen D, De Clercq E, Meijer DK. J Drug Target; 1999 Feb 15; 6(5):323-35. PubMed ID: 10342381 [Abstract] [Full Text] [Related]
15. CD4-derived peptide and sulfated polysaccharides have similar mechanisms of anti-HIV activity based on electrostatic interactions with positively charged gp120 fragments. Meshcheryakova D, Andreev S, Tarasova S, Sidorova M, Vafina M, Kornilaeva G, Karamov E, Khaitov R. Mol Immunol; 1993 Aug 15; 30(11):993-1001. PubMed ID: 8102473 [Abstract] [Full Text] [Related]
17. The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. Cormier EG, Dragic T. J Virol; 2002 Sep 15; 76(17):8953-7. PubMed ID: 12163614 [Abstract] [Full Text] [Related]
18. Short synthetic peptides derived from viral proteins compete with HIV gp120 for the binding to CD4 receptors. Chersi A, Pugliese O, Federico A, Viora M. Viral Immunol; 2000 Sep 15; 13(4):547-54. PubMed ID: 11192301 [Abstract] [Full Text] [Related]
19. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. Moulard M, Lortat-Jacob H, Mondor I, Roca G, Wyatt R, Sodroski J, Zhao L, Olson W, Kwong PD, Sattentau QJ. J Virol; 2000 Feb 15; 74(4):1948-60. PubMed ID: 10644368 [Abstract] [Full Text] [Related]
20. SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Delézay O, Hammache D, Fantini J, Yahi N. Biochemistry; 1996 Dec 10; 35(49):15663-71. PubMed ID: 8961929 [Abstract] [Full Text] [Related] Page: [Next] [New Search]