These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 8611551

  • 1. Mutational analysis suggests the same design for editing activities of two tRNA synthetases.
    Lin L, Schimmel P.
    Biochemistry; 1996 Apr 30; 35(17):5596-601. PubMed ID: 8611551
    [Abstract] [Full Text] [Related]

  • 2. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R, Yokoyama S.
    J Mol Biol; 2006 Jun 16; 359(4):901-12. PubMed ID: 16697013
    [Abstract] [Full Text] [Related]

  • 3. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE, Schimmel P.
    Biochemistry; 2003 Nov 11; 42(44):12989-97. PubMed ID: 14596614
    [Abstract] [Full Text] [Related]

  • 4. The fidelity of the translation of the genetic code.
    Sankaranarayanan R, Moras D.
    Acta Biochim Pol; 2001 Nov 11; 48(2):323-35. PubMed ID: 11732604
    [Abstract] [Full Text] [Related]

  • 5. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates.
    Bharatham N, Bharatham K, Lee Y, Woo Lee K.
    Biophys Chem; 2009 Jul 11; 143(1-2):34-43. PubMed ID: 19398261
    [Abstract] [Full Text] [Related]

  • 6. Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA.
    Schmidt E, Schimmel P.
    Biochemistry; 1995 Sep 05; 34(35):11204-10. PubMed ID: 7669778
    [Abstract] [Full Text] [Related]

  • 7. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway.
    Döring V, Mootz HD, Nangle LA, Hendrickson TL, de Crécy-Lagard V, Schimmel P, Marlière P.
    Science; 2001 Apr 20; 292(5516):501-4. PubMed ID: 11313495
    [Abstract] [Full Text] [Related]

  • 8. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction.
    Kakitani M, Tonomura B, Hiromi K.
    Biochem Int; 1987 Apr 20; 14(4):597-603. PubMed ID: 3453086
    [Abstract] [Full Text] [Related]

  • 9. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism.
    Zhai Y, Martinis SA.
    Biochemistry; 2005 Nov 29; 44(47):15437-43. PubMed ID: 16300391
    [Abstract] [Full Text] [Related]

  • 10. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW, Briggs JM.
    Proteins; 2004 Mar 01; 54(4):693-704. PubMed ID: 14997565
    [Abstract] [Full Text] [Related]

  • 11. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase.
    Glasfeld E, Landro JA, Schimmel P.
    Biochemistry; 1996 Apr 02; 35(13):4139-45. PubMed ID: 8672449
    [Abstract] [Full Text] [Related]

  • 12. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase.
    Mursinna RS, Lee KW, Briggs JM, Martinis SA.
    Biochemistry; 2004 Jan 13; 43(1):155-65. PubMed ID: 14705941
    [Abstract] [Full Text] [Related]

  • 13. Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase.
    Hountondji C, Lazennec C, Beauvallet C, Dessen P, Pernollet JC, Plateau P, Blanquet S.
    Biochemistry; 2002 Dec 17; 41(50):14856-65. PubMed ID: 12475234
    [Abstract] [Full Text] [Related]

  • 14. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y, Nawaz MH, Lee KW, Kirkbride E, Briggs JM, Martinis SA.
    Biochemistry; 2007 Mar 20; 46(11):3331-7. PubMed ID: 17311409
    [Abstract] [Full Text] [Related]

  • 15. A eubacterial Mycobacterium tuberculosis tRNA synthetase is eukaryote-like and resistant to a eubacterial-specific antisynthetase drug.
    Sassanfar M, Kranz JE, Gallant P, Schimmel P, Shiba K.
    Biochemistry; 1996 Aug 06; 35(31):9995-10003. PubMed ID: 8756461
    [Abstract] [Full Text] [Related]

  • 16. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO.
    Mol Biol (Mosk); 1984 Aug 06; 18(1):205-26. PubMed ID: 6423966
    [Abstract] [Full Text] [Related]

  • 17. Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase.
    Ohannesian DW, Oh J, Hou YM.
    Biochemistry; 1996 Nov 12; 35(45):14405-12. PubMed ID: 8916927
    [Abstract] [Full Text] [Related]

  • 18. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H, Fersht AR.
    Nucleic Acids Res; 1981 Jul 10; 9(13):3105-17. PubMed ID: 7024910
    [Abstract] [Full Text] [Related]

  • 19. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W, Cramer F.
    Eur J Biochem; 1983 Mar 01; 131(1):65-80. PubMed ID: 6339236
    [Abstract] [Full Text] [Related]

  • 20. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues.
    Zivkovic I, Moschner J, Koksch B, Gruic-Sovulj I.
    FEBS J; 2020 Feb 01; 287(4):800-813. PubMed ID: 31486189
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.