These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 8613759
1. Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. Mercken M, Fischer I, Kosik KS, Nixon RA. J Neurosci; 1995 Dec; 15(12):8259-67. PubMed ID: 8613759 [Abstract] [Full Text] [Related]
2. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics. Nixon RA, Fischer I, Lewis SE. J Cell Biol; 1990 Feb; 110(2):437-48. PubMed ID: 1688856 [Abstract] [Full Text] [Related]
3. Axonal transport of a subclass of tau proteins: evidence for the regional differentiation of microtubules in neurons. Tytell M, Brady ST, Lasek RJ. Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1570-4. PubMed ID: 6200879 [Abstract] [Full Text] [Related]
4. Identification of a new microtubule-interacting protein Mip-90. González M, Cambiazo V, Maccioni RB. Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757 [Abstract] [Full Text] [Related]
5. Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins. Saoudi Y, Paintrand I, Multigner L, Job D. J Cell Sci; 1995 Jan; 108 ( Pt 1)():357-67. PubMed ID: 7738110 [Abstract] [Full Text] [Related]
6. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Janning D, Igaev M, Sündermann F, Brühmann J, Beutel O, Heinisch JJ, Bakota L, Piehler J, Junge W, Brandt R. Mol Biol Cell; 2014 Nov 05; 25(22):3541-51. PubMed ID: 25165145 [Abstract] [Full Text] [Related]
7. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis. Liu Y, Wang C, Destin G, Szaro BG. Eur J Neurosci; 2015 May 05; 41(10):1263-75. PubMed ID: 25656701 [Abstract] [Full Text] [Related]
8. Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells. Saragoni L, Hernández P, Maccioni RB. Neurochem Res; 2000 Jan 05; 25(1):59-70. PubMed ID: 10685605 [Abstract] [Full Text] [Related]
9. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. Al-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA. J Cell Biol; 2002 Jun 24; 157(7):1187-96. PubMed ID: 12082079 [Abstract] [Full Text] [Related]
10. A 205 kDa protein from non-neuronal cells in culture contains tubulin binding epitopes. Vial C, Armas-Portela R, Avila J, González M, Maccioni RB. Mol Cell Biochem; 1995 Mar 23; 144(2):109-116. PubMed ID: 7542740 [Abstract] [Full Text] [Related]
11. The balance between tau protein's microtubule growth and nucleation activities: implications for the formation of axonal microtubules. Brandt R, Lee G. J Neurochem; 1993 Sep 23; 61(3):997-1005. PubMed ID: 8360696 [Abstract] [Full Text] [Related]
12. Tau is enriched on dynamic microtubules in the distal region of growing axons. Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I. J Neurosci; 1996 Jun 01; 16(11):3601-19. PubMed ID: 8642405 [Abstract] [Full Text] [Related]
13. Differential axonal transport of soluble and insoluble tau in the rat sciatic nerve. Tashiro T, Sun X, Tsuda M, Komiya Y. J Neurochem; 1996 Oct 01; 67(4):1566-74. PubMed ID: 8858941 [Abstract] [Full Text] [Related]
14. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system. Hirokawa N, Bloom GS, Vallee RB. J Cell Biol; 1985 Jul 01; 101(1):227-39. PubMed ID: 2409096 [Abstract] [Full Text] [Related]
15. Axonal transport of microtubule proteins: cytotypic variation of tubulin and MAPs in neurons. Brady ST, Black MM. Ann N Y Acad Sci; 1986 Jul 01; 466():199-217. PubMed ID: 2425679 [No Abstract] [Full Text] [Related]
16. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. Jung D, Filliol D, Miehe M, Rendon A. Cell Motil Cytoskeleton; 1993 Jul 01; 24(4):245-55. PubMed ID: 8097434 [Abstract] [Full Text] [Related]
17. Stable expression of heterologous microtubule-associated proteins (MAPs) in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization. Barlow S, Gonzalez-Garay ML, West RR, Olmsted JB, Cabral F. J Cell Biol; 1994 Aug 01; 126(4):1017-29. PubMed ID: 7519616 [Abstract] [Full Text] [Related]
18. Changes in the microtubule proteins in the developing and transected spinal cords of the bullfrog tadpole: induction of microtubule-associated protein 2c and enhanced levels of Tau and tubulin in regenerating central axons. Yin HS, Chou HC, Chiu MM. Neuroscience; 1995 Aug 01; 67(3):763-75. PubMed ID: 7675202 [Abstract] [Full Text] [Related]
19. Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau. Panda D, Miller HP, Wilson L. Proc Natl Acad Sci U S A; 1999 Oct 26; 96(22):12459-64. PubMed ID: 10535944 [Abstract] [Full Text] [Related]
20. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. Brady ST, Tytell M, Lasek RJ. J Cell Biol; 1984 Nov 26; 99(5):1716-24. PubMed ID: 6490717 [Abstract] [Full Text] [Related] Page: [Next] [New Search]