These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


663 related items for PubMed ID: 8615798

  • 1. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S, Mazumder A, Banerjee RK.
    Biochem J; 1996 Mar 15; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [Abstract] [Full Text] [Related]

  • 2. An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase.
    Adak S, Bandyopadhyay D, Bandyopadhyay U, Banerjee RK.
    Mol Cell Biochem; 2001 Feb 15; 218(1-2):1-11. PubMed ID: 11330823
    [Abstract] [Full Text] [Related]

  • 3. Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I.
    Bhattacharyya DK, Bandyopadhyay U, Banerjee RK.
    J Biol Chem; 1993 Oct 25; 268(30):22292-8. PubMed ID: 8226738
    [Abstract] [Full Text] [Related]

  • 4. Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase.
    Cheng KC, Nowak T.
    J Biol Chem; 1989 Feb 25; 264(6):3317-24. PubMed ID: 2536743
    [Abstract] [Full Text] [Related]

  • 5. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S, Bhaduri A.
    J Biol Chem; 1986 Apr 05; 261(10):4519-24. PubMed ID: 3957906
    [Abstract] [Full Text] [Related]

  • 6. Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate.
    Adak S, Mazumdar A, Banerjee RK.
    J Biol Chem; 1997 Apr 25; 272(17):11049-56. PubMed ID: 9110998
    [Abstract] [Full Text] [Related]

  • 7. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase.
    Ghosh M, Datta AK.
    Biochem J; 1994 Mar 01; 298 ( Pt 2)(Pt 2):295-301. PubMed ID: 8135734
    [Abstract] [Full Text] [Related]

  • 8. Probing the role of active site histidine residues in the catalytic activity of lacrimal gland peroxidase.
    Mazumdar A, Bandyopadhyay D, Bandyopadhyay U, Banerjee RK.
    Mol Cell Biochem; 2002 Aug 01; 237(1-2):21-30. PubMed ID: 12236583
    [Abstract] [Full Text] [Related]

  • 9. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S, Benjamin WB.
    Biochem J; 1981 Jun 01; 195(3):735-43. PubMed ID: 7316981
    [Abstract] [Full Text] [Related]

  • 10. Haem propionates control oxidative and reductive activities of horseradish peroxidase by maintaining the correct orientation of the haem.
    Adak S, Banerjee RK.
    Biochem J; 1998 Aug 15; 334 ( Pt 1)(Pt 1):51-6. PubMed ID: 9693101
    [Abstract] [Full Text] [Related]

  • 11. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP, Cardemil E.
    Biochim Biophys Acta; 1987 Oct 15; 915(3):385-92. PubMed ID: 3307926
    [Abstract] [Full Text] [Related]

  • 12. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM, Hsu RY.
    Arch Biochem Biophys; 1983 Aug 15; 225(1):296-305. PubMed ID: 6614923
    [Abstract] [Full Text] [Related]

  • 13. Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site.
    Mazumdar A, Adak S, Chatterjee R, Banerjee RK.
    Biochem J; 1997 Jun 15; 324 ( Pt 3)(Pt 3):713-9. PubMed ID: 9210393
    [Abstract] [Full Text] [Related]

  • 14. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme.
    Ray S, Sarkar D, Ray M.
    Biochem J; 1991 May 01; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922
    [Abstract] [Full Text] [Related]

  • 15. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR, Dekker EE.
    J Biol Chem; 1989 Nov 05; 264(31):18296-301. PubMed ID: 2681195
    [Abstract] [Full Text] [Related]

  • 16. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
    Davril M, Jung ML, Duportail G, Lohez M, Han KK, Bieth JG.
    J Biol Chem; 1984 Mar 25; 259(6):3851-7. PubMed ID: 6561199
    [Abstract] [Full Text] [Related]

  • 17. Evidence for an essential arginine in the flavoprotein nitroalkane oxidase.
    Gadda G, Banerjee A, Fleming GS, Fitzpatrick PF.
    J Enzyme Inhib; 2001 Mar 25; 16(2):157-63. PubMed ID: 11342284
    [Abstract] [Full Text] [Related]

  • 18. Characterization of an essential arginine residue in the plasma membrane H+-ATPase of Neurospora crassa.
    Kasher JS, Allen KE, Kasamo K, Slayman CW.
    J Biol Chem; 1986 Aug 15; 261(23):10808-13. PubMed ID: 2874143
    [Abstract] [Full Text] [Related]

  • 19. Chemical modification of arginine residues of Notechis scutatus scutatus notexin.
    Chang LS, Wu PF, Liou JC, Chiang-Lin WH, Yang CC.
    Toxicon; 2004 Oct 15; 44(5):491-7. PubMed ID: 15450923
    [Abstract] [Full Text] [Related]

  • 20. Identification of arg-30 as the essential residue for the enzymatic activity of Taiwan cobra phospholipase A2.
    Chang LS, Lin SR, Chang CC.
    J Biochem; 1998 Oct 15; 124(4):764-8. PubMed ID: 9756621
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.