These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 8618560

  • 1. Reduced oxidative muscle metabolism in chronic fatigue syndrome.
    McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS.
    Muscle Nerve; 1996 May; 19(5):621-5. PubMed ID: 8618560
    [Abstract] [Full Text] [Related]

  • 2. Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy.
    Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T.
    Chest; 1992 Dec; 102(6):1716-22. PubMed ID: 1446478
    [Abstract] [Full Text] [Related]

  • 3. Effects of cardiac transplantation on bioenergetic abnormalities of skeletal muscle in congestive heart failure.
    Stratton JR, Kemp GJ, Daly RC, Yacoub M, Rajagopalan B.
    Circulation; 1994 Apr; 89(4):1624-31. PubMed ID: 8149530
    [Abstract] [Full Text] [Related]

  • 4. Impaired oxygen delivery to muscle in chronic fatigue syndrome.
    McCully KK, Natelson BH.
    Clin Sci (Lond); 1999 Nov; 97(5):603-8; discussion 611-3. PubMed ID: 10545311
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Muscle metabolism with blood flow restriction in chronic fatigue syndrome.
    McCully KK, Smith S, Rajaei S, Leigh JS, Natelson BH.
    J Appl Physiol (1985); 2004 Mar; 96(3):871-8. PubMed ID: 14578362
    [Abstract] [Full Text] [Related]

  • 7. Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome.
    Jones DE, Hollingsworth KG, Taylor R, Blamire AM, Newton JL.
    J Intern Med; 2010 Apr; 267(4):394-401. PubMed ID: 20433583
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Impaired cardiovascular response to standing in chronic fatigue syndrome.
    Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL.
    Eur J Clin Invest; 2010 Jul; 40(7):608-15. PubMed ID: 20497461
    [Abstract] [Full Text] [Related]

  • 10. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study.
    Chance B, Eleff S, Leigh JS, Sokolow D, Sapega A.
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6714-8. PubMed ID: 6947247
    [Abstract] [Full Text] [Related]

  • 11. Phases of metabolism during progressive exercise to fatigue in human skeletal muscle.
    Kent-Braun JA, Miller RG, Weiner MW.
    J Appl Physiol (1985); 1993 Aug; 75(2):573-80. PubMed ID: 8226454
    [Abstract] [Full Text] [Related]

  • 12. The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS.
    Yoshida T.
    J Physiol Anthropol Appl Human Sci; 2002 Sep; 21(5):247-55. PubMed ID: 12491822
    [Abstract] [Full Text] [Related]

  • 13. Muscle metabolism in track athletes, using 31P magnetic resonance spectroscopy.
    McCully KK, Vandenborne K, DeMeirleir K, Posner JD, Leigh JS.
    Can J Physiol Pharmacol; 1992 Oct; 70(10):1353-9. PubMed ID: 1490254
    [Abstract] [Full Text] [Related]

  • 14. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study.
    Rana P, Varshney A, Devi MM, Kumar P, Khushu S.
    Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477
    [Abstract] [Full Text] [Related]

  • 15. Endurance-trained and untrained skeletal muscle bioenergetics observed with magnetic resonance spectroscopy.
    Guthrie BM, Frostick SP, Goodman J, Mikulis DJ, Plyley MJ, Marshall KW.
    Can J Appl Physiol; 1996 Aug; 21(4):251-63. PubMed ID: 8853467
    [Abstract] [Full Text] [Related]

  • 16. Physical training improves skeletal muscle metabolism in patients with chronic heart failure.
    Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK.
    J Am Coll Cardiol; 1993 Apr; 21(5):1101-6. PubMed ID: 8459063
    [Abstract] [Full Text] [Related]

  • 17. High-energy phosphate metabolism during two bouts of progressive calf exercise in humans measured by phosphorus-31 magnetic resonance spectroscopy.
    Schocke MF, Esterhammer R, Arnold W, Kammerlander C, Burtscher M, Fraedrich G, Jaschke WR, Greiner A.
    Eur J Appl Physiol; 2005 Jan; 93(4):469-79. PubMed ID: 15517340
    [Abstract] [Full Text] [Related]

  • 18. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles.
    McCully KK, Fielding RA, Evans WJ, Leigh JS, Posner JD.
    J Appl Physiol (1985); 1993 Aug; 75(2):813-9. PubMed ID: 8226486
    [Abstract] [Full Text] [Related]

  • 19. Skeletal muscle metabolism in uremic rats: a 31P-magnetic resonance study.
    Thompson CH, Kemp GJ, Green YS, Rix LK, Radda GK, Ledingham JG.
    Nephron; 1993 Aug; 63(3):330-4. PubMed ID: 8446272
    [Abstract] [Full Text] [Related]

  • 20. Application of 31P magnetic resonance spectroscopy to the study of athletic performance.
    McCully KK, Kent JA, Chance B.
    Sports Med; 1988 May; 5(5):312-21. PubMed ID: 3387735
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.