These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1448 related items for PubMed ID: 8619323

  • 1. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM, Ryman T, Högestätt ED.
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [Abstract] [Full Text] [Related]

  • 2. Endothelium-dependent relaxation resistant to N omega-nitro-L-arginine in the rat hepatic artery and aorta.
    Zygmunt PM, Grundemar L, Högestätt ED.
    Acta Physiol Scand; 1994 Sep; 152(1):107-14. PubMed ID: 7810328
    [Abstract] [Full Text] [Related]

  • 3. The endothelium mediates a nitric oxide-independent hyperpolarization and relaxation in the rat hepatic artery.
    Zygmunt PM, Waldeck K, Högestätt ED.
    Acta Physiol Scand; 1994 Dec; 152(4):375-84. PubMed ID: 7701938
    [Abstract] [Full Text] [Related]

  • 4. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP, Cocks TM.
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [Abstract] [Full Text] [Related]

  • 5. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED.
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [Abstract] [Full Text] [Related]

  • 6. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM, Bodelsson M.
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [Abstract] [Full Text] [Related]

  • 7. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.
    Priviero FB, Teixeira CE, Toque HA, Claudino MA, Webb RC, De Nucci G, Zanesco A, Antunes E.
    Clin Exp Pharmacol Physiol; 2006 Jan; 33(5-6):448-55. PubMed ID: 16700877
    [Abstract] [Full Text] [Related]

  • 8. Effect of pregnancy on contraction and endothelium-mediated relaxation of renal and mesenteric arteries.
    Kim TH, Weiner CP, Thompson LP.
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H41-7. PubMed ID: 8048607
    [Abstract] [Full Text] [Related]

  • 9. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y, Ku DD, Man RY, Vanhoutte PM.
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [Abstract] [Full Text] [Related]

  • 10. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E, Groschner K, Kukovetz WR, Brunner F.
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [Abstract] [Full Text] [Related]

  • 11. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D, Simonsen U, Hernández M, García-Sacristán A.
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [Abstract] [Full Text] [Related]

  • 12. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP, Bendhack LM.
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [Abstract] [Full Text] [Related]

  • 13. Possible role of the endothelium on the vascular response to prostaglandin E2 in rat femoral arterial preparations in vivo and in vitro.
    Takanashi H.
    Arch Int Pharmacodyn Ther; 1993 Dec; 325():70-85. PubMed ID: 8110032
    [Abstract] [Full Text] [Related]

  • 14. Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice.
    Chataigneau T, Félétou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM.
    Br J Pharmacol; 1999 Jan; 126(1):219-26. PubMed ID: 10051139
    [Abstract] [Full Text] [Related]

  • 15. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA, Buckley CH, Jones GC, Sandeep TC, Andrews RC, Elliott AI, Gray GA, Williams BC, McKnight JA, Walker BR, Hadoke PW.
    Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664
    [Abstract] [Full Text] [Related]

  • 16. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y, Otsuka A, Tanaka H, Shigenobu K.
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [Abstract] [Full Text] [Related]

  • 17. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K.
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [Abstract] [Full Text] [Related]

  • 18. Endothelium-dependent and BRL 34915-induced vasodilatation in rat isolated perfused mesenteric arteries: role of G-proteins, K+ and calcium channels.
    Adeagbo AS, Malik KU.
    Br J Pharmacol; 1990 Jul; 100(3):427-34. PubMed ID: 2167732
    [Abstract] [Full Text] [Related]

  • 19. Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to N omega-nitro-L-arginine.
    Zygmunt PM, Högestätt ED, Grundemar L.
    Acta Physiol Scand; 1994 Oct; 152(2):137-43. PubMed ID: 7839858
    [Abstract] [Full Text] [Related]

  • 20. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 73.