These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
605 related items for PubMed ID: 8621645
1. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. Song KS, Li Shengwen, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. J Biol Chem; 1996 Apr 19; 271(16):9690-7. PubMed ID: 8621645 [Abstract] [Full Text] [Related]
2. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. Li S, Couet J, Lisanti MP. J Biol Chem; 1996 Nov 15; 271(46):29182-90. PubMed ID: 8910575 [Abstract] [Full Text] [Related]
3. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. Li S, Song KS, Lisanti MP. J Biol Chem; 1996 Jan 05; 271(1):568-73. PubMed ID: 8550621 [Abstract] [Full Text] [Related]
4. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. J Biol Chem; 1997 Mar 07; 272(10):6525-33. PubMed ID: 9045678 [Abstract] [Full Text] [Related]
5. Oligomeric structure of caveolin: implications for caveolae membrane organization. Sargiacomo M, Scherer PE, Tang Z, Kübler E, Song KS, Sanders MC, Lisanti MP. Proc Natl Acad Sci U S A; 1995 Sep 26; 92(20):9407-11. PubMed ID: 7568142 [Abstract] [Full Text] [Related]
6. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Couet J, Sargiacomo M, Lisanti MP. J Biol Chem; 1997 Nov 28; 272(48):30429-38. PubMed ID: 9374534 [Abstract] [Full Text] [Related]
7. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP. J Biol Chem; 1995 Jun 30; 270(26):15693-701. PubMed ID: 7797570 [Abstract] [Full Text] [Related]
8. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, Gailani MR. J Biol Chem; 2001 Jun 01; 276(22):19503-11. PubMed ID: 11278759 [Abstract] [Full Text] [Related]
9. Localization of RhoA GTPase to endothelial caveolae-enriched membrane domains. Gingras D, Gauthier F, Lamy S, Desrosiers RR, Béliveau R. Biochem Biophys Res Commun; 1998 Jun 29; 247(3):888-93. PubMed ID: 9647788 [Abstract] [Full Text] [Related]
10. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. Song KS, Tang Z, Li S, Lisanti MP. J Biol Chem; 1997 Feb 14; 272(7):4398-403. PubMed ID: 9020162 [Abstract] [Full Text] [Related]
11. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. Razani B, Rubin CS, Lisanti MP. J Biol Chem; 1999 Sep 10; 274(37):26353-60. PubMed ID: 10473592 [Abstract] [Full Text] [Related]
12. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. Schlegel A, Lisanti MP. J Biol Chem; 2000 Jul 14; 275(28):21605-17. PubMed ID: 10801850 [Abstract] [Full Text] [Related]
13. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Oh P, Schnitzer JE. Mol Biol Cell; 2001 Mar 14; 12(3):685-98. PubMed ID: 11251080 [Abstract] [Full Text] [Related]
14. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. Bilderback TR, Grigsby RJ, Dobrowsky RT. J Biol Chem; 1997 Apr 18; 272(16):10922-7. PubMed ID: 9099750 [Abstract] [Full Text] [Related]
16. Caveolin-1 interacts directly with dynamin-2. Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA. J Mol Biol; 2005 Apr 29; 348(2):491-501. PubMed ID: 15811383 [Abstract] [Full Text] [Related]
17. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. McCabe JB, Berthiaume LG. Mol Biol Cell; 2001 Nov 29; 12(11):3601-17. PubMed ID: 11694592 [Abstract] [Full Text] [Related]
18. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. Li S, Seitz R, Lisanti MP. J Biol Chem; 1996 Feb 16; 271(7):3863-8. PubMed ID: 8632005 [Abstract] [Full Text] [Related]
19. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. Nat Cell Biol; 1999 Jun 16; 1(2):98-105. PubMed ID: 10559881 [Abstract] [Full Text] [Related]
20. Identification of caveolin and caveolin-related proteins in the brain. Cameron PL, Ruffin JW, Bollag R, Rasmussen H, Cameron RS. J Neurosci; 1997 Dec 15; 17(24):9520-35. PubMed ID: 9391007 [Abstract] [Full Text] [Related] Page: [Next] [New Search]