These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 8624355

  • 1. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S, Simmons NL.
    Biochim Biophys Acta; 1996 Feb 21; 1279(1):111-7. PubMed ID: 8624355
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT, Simmons NL, Hirst BH.
    Pharm Res; 1993 May 21; 10(5):667-73. PubMed ID: 8391693
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Sodium-proton exchange in human ileal brush-border membrane vesicles.
    Ramaswamy K, Harig JM, Kleinman JG, Harris MS, Barry JA.
    Biochim Biophys Acta; 1989 Jun 06; 981(2):193-9. PubMed ID: 2543457
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential.
    Daniel H, Morse EL, Adibi SA.
    J Biol Chem; 1991 Oct 25; 266(30):19917-24. PubMed ID: 1939055
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus.
    Thamotharan M, Zonno V, Storelli C, Ahearn GA.
    Am J Physiol; 1996 May 25; 270(5 Pt 2):R948-54. PubMed ID: 8928925
    [Abstract] [Full Text] [Related]

  • 12. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM, Branham S, Weinman EJ.
    Am J Physiol; 1983 Aug 25; 245(2):F151-8. PubMed ID: 6309010
    [Abstract] [Full Text] [Related]

  • 13. Na+ and H+ transport in human jejunal brush-border membrane vesicles.
    Kleinman JG, Harig JM, Barry JA, Ramaswamy K.
    Am J Physiol; 1988 Aug 25; 255(2 Pt 1):G206-11. PubMed ID: 2841867
    [Abstract] [Full Text] [Related]

  • 14. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y, Ganapathy V, Leibach FH.
    Biochem Biophys Res Commun; 1985 Nov 15; 132(3):946-53. PubMed ID: 4074356
    [Abstract] [Full Text] [Related]

  • 15. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
    Blomstedt JW, Aronson PS.
    J Clin Invest; 1980 Apr 15; 65(4):931-4. PubMed ID: 7358852
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A, Terasaki T, Tamai I, Hirooka H.
    J Pharmacol Exp Ther; 1987 May 15; 241(2):594-601. PubMed ID: 3572815
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.