These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 8631333

  • 1. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system.
    Rohwer JM, Jensen PR, Shinohara Y, Postma PW, Westerhoff HV.
    Eur J Biochem; 1996 Jan 15; 235(1-2):225-30. PubMed ID: 8631333
    [Abstract] [Full Text] [Related]

  • 2. Glucose transport in Salmonella typhimurium and Escherichia coli.
    Postma PW, Neyssel OM, van Ree R.
    Eur J Biochem; 1982 Mar 15; 123(1):113-9. PubMed ID: 7040073
    [Abstract] [Full Text] [Related]

  • 3. Limits to inducer exclusion: inhibition of the bacterial phosphotransferase system by glycerol kinase.
    Rohwer JM, Bader R, Westerhoff HV, Postma PW.
    Mol Microbiol; 1998 Jul 15; 29(2):641-52. PubMed ID: 9720879
    [Abstract] [Full Text] [Related]

  • 4. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR, Michelsen O.
    J Bacteriol; 1992 Dec 15; 174(23):7635-41. PubMed ID: 1447134
    [Abstract] [Full Text] [Related]

  • 5. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate.
    Jensen PR, Loman L, Petra B, van der Weijden C, Westerhoff HV.
    J Bacteriol; 1995 Jun 15; 177(12):3420-6. PubMed ID: 7768851
    [Abstract] [Full Text] [Related]

  • 6. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E, Wagner EF, Schweiger M.
    Proc Natl Acad Sci U S A; 1979 Nov 15; 76(11):5529-33. PubMed ID: 392504
    [Abstract] [Full Text] [Related]

  • 7. Control of cellular redox potential as measured in a steady-state, cell-free system.
    Burat MK, Burat T, Davis-Van Thienen WI, Davis EJ.
    Arch Biochem Biophys; 1984 Nov 15; 235(1):150-8. PubMed ID: 6238571
    [Abstract] [Full Text] [Related]

  • 8. DNA supercoiling depends on the phosphorylation potential in Escherichia coli.
    van Workum M, van Dooren SJ, Oldenburg N, Molenaar D, Jensen PR, Snoep JL, Westerhoff HV.
    Mol Microbiol; 1996 Apr 15; 20(2):351-60. PubMed ID: 8733233
    [Abstract] [Full Text] [Related]

  • 9. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS, Schmidt MR, Saier MH.
    J Cell Biochem; 1982 Apr 15; 18(2):239-44. PubMed ID: 7040431
    [Abstract] [Full Text] [Related]

  • 10. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C, Trahan L.
    Can J Microbiol; 1982 Feb 15; 28(2):190-9. PubMed ID: 7066764
    [Abstract] [Full Text] [Related]

  • 11. Evidence for new factors in the coordinate regulation of energy metabolism in Escherichia coli. Effects of hypoxia, chloramphenicol succinate, and 2,4-dinitrophenol on glucose utilization, glycogen synthesis, adenylate energy charge, and hexose phosphates during the first two periods of nitrogen starvation.
    Dietzler DN, Leckie MP, Lewis JW, Porter SE, Taxman TL, Lais CJ.
    J Biol Chem; 1979 Sep 10; 254(17):8295-307. PubMed ID: 381303
    [Abstract] [Full Text] [Related]

  • 12. A novel ATP-driven glucose transport system in Escherichia coli.
    Wagner EF, Fabricant JD, Schweiger M.
    Eur J Biochem; 1979 Dec 10; 102(1):231-6. PubMed ID: 391565
    [Abstract] [Full Text] [Related]

  • 13. ATP depletion and inactivation of an ATP-sensitive taurine channel by classic ion channel blockers.
    Ballatori N, Truong AT, Jackson PS, Strange K, Boyer JL.
    Mol Pharmacol; 1995 Sep 10; 48(3):472-6. PubMed ID: 7565627
    [Abstract] [Full Text] [Related]

  • 14. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL, Lambourne LT.
    Proc Biol Sci; 1992 Oct 22; 250(1327):51-5. PubMed ID: 1361062
    [Abstract] [Full Text] [Related]

  • 15. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria.
    Modica-Napolitano JS, Weiss MJ, Chen LB, Aprille JR.
    Biochem Biophys Res Commun; 1984 Feb 14; 118(3):717-23. PubMed ID: 6200108
    [Abstract] [Full Text] [Related]

  • 16. Stoichiometry of the H+-ATPase of Escherichia coli cells during anaerobic growth.
    Kashket ER.
    FEBS Lett; 1983 Apr 18; 154(2):343-6. PubMed ID: 6219895
    [Abstract] [Full Text] [Related]

  • 17. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE, Vinogradova SO, Mezentseva VS, Samoĭlova EV.
    Biofizika; 1999 Apr 18; 44(3):465-73. PubMed ID: 10439862
    [Abstract] [Full Text] [Related]

  • 18. ATP regulates calcium efflux and growth in E. coli.
    Naseem R, Wann KT, Holland IB, Campbell AK.
    J Mol Biol; 2009 Aug 07; 391(1):42-56. PubMed ID: 19481094
    [Abstract] [Full Text] [Related]

  • 19. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE, Ferguson SJ.
    Eur J Biochem; 1983 May 02; 132(2):425-31. PubMed ID: 6301834
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.