These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 863819

  • 21. Theoretical model of blood flow through hollow fibres considering hematocrit-dependent, non-Newtonian blood properties.
    Lerche D, Oelke R.
    Int J Artif Organs; 1990 Nov; 13(11):742-6. PubMed ID: 2089012
    [Abstract] [Full Text] [Related]

  • 22. Microhemodynamics of blood flow in narrow glass capillaries of 9 to 20 micrometers; the Fahraeus effect.
    Ohshima N, Sato M, Oda N.
    Biorheology; 1988 Nov; 25(1-2):339-48. PubMed ID: 3196831
    [Abstract] [Full Text] [Related]

  • 23. Fahraeus effect and cell screening during tub flow of human blood. I. Effect of variation of flow rate.
    Gaehtgens P, Albrecht KH, Kreutz F.
    Biorheology; 1978 Nov; 15(3-4):147-54. PubMed ID: 737317
    [No Abstract] [Full Text] [Related]

  • 24. Red blood cell motion and hematocrit distribution in a deforming capillary.
    Friend M, Lee JS.
    J Biomech Eng; 1990 Nov; 112(4):451-6. PubMed ID: 2273873
    [Abstract] [Full Text] [Related]

  • 25. Are physiological changes in capillary tube hematocrit related to alterations in capillary perfusion heterogeneity?
    Damon DH, Duling BR.
    Int J Microcirc Clin Exp; 1987 Dec; 6(4):309-19. PubMed ID: 3429141
    [Abstract] [Full Text] [Related]

  • 26. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC, Hung TK, Bugliarello G.
    Biorheology; 1980 Dec; 17(4):331-42. PubMed ID: 7260345
    [No Abstract] [Full Text] [Related]

  • 27. Determination of capillary tube hematocrit during arteriolar microperfusion.
    Keller MW, Damon DN, Duling BR.
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2229-38. PubMed ID: 7517645
    [Abstract] [Full Text] [Related]

  • 28. Theoretical models of capillary flow.
    Skalak R.
    Blood Cells; 1982 Jun; 8(1):147-52. PubMed ID: 7115972
    [Abstract] [Full Text] [Related]

  • 29. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR, Goldsmith HL.
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Additional pressure drop at a bifurcation due to the passage of flexible disks in a large scale model.
    Kiani MF, Cokelet GR.
    J Biomech Eng; 1994 Nov; 116(4):497-501. PubMed ID: 7869726
    [Abstract] [Full Text] [Related]

  • 35. [The Fahraeus and Fahraeus-Lindqvist effects: experimental testing of theoretical models].
    Azelvandre F, Oiknine C.
    Biorheology; 1976 Dec; 13(6):325-35. PubMed ID: 1009238
    [No Abstract] [Full Text] [Related]

  • 36. [Blood flow in the capillaries].
    Barras JP.
    Helv Med Acta; 1969 Mar; 34(6):468-77. PubMed ID: 5779214
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Accounting for Tube Hematocrit in Modeling of Blood Flow in Cerebral Capillary Networks.
    Botkin ND, Kovtanyuk AE, Turova VL, Sidorenko IN, Lampe R.
    Comput Math Methods Med; 2019 Mar; 2019():4235937. PubMed ID: 31531122
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. The Fahraeus effect.
    Barbee JH, Cokelet GR.
    Microvasc Res; 1971 Jan; 3(1):6-16. PubMed ID: 5092929
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.