These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


367 related items for PubMed ID: 8643340

  • 1. Double-stranded RNA: the variables controlling its degradation by RNases.
    Yakovlev GI, Sorrentino S, Moiseyev GP, Libonati M.
    Nucleic Acids Symp Ser; 1995; (33):106-8. PubMed ID: 8643340
    [Abstract] [Full Text] [Related]

  • 2. Single-strand-preferring RNases degrade double-stranded RNAs by destabilizing its secondary structure.
    Yakovlev G, Moiseyev GP, Sorrentino S, De Prisco R, Libonati M.
    J Biomol Struct Dyn; 1997 Oct; 15(2):243-50. PubMed ID: 9399152
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Human pancreatic-type and nonpancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties.
    Sorrentino S, Libonati M.
    Arch Biochem Biophys; 1994 Aug 01; 312(2):340-8. PubMed ID: 8037446
    [Abstract] [Full Text] [Related]

  • 5. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA.
    Libonati M, Sorrentino S.
    Mol Cell Biochem; 1992 Nov 18; 117(2):139-51. PubMed ID: 1488047
    [Abstract] [Full Text] [Related]

  • 6. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM, Crouch RJ.
    RNA; 1995 May 18; 1(3):246-59. PubMed ID: 7489497
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66.
    Fisher BM, Ha JH, Raines RT.
    Biochemistry; 1998 Sep 01; 37(35):12121-32. PubMed ID: 9724524
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM, Kote-Jarai Z, Hofsteenge J.
    Biochemistry; 1996 Jul 16; 35(28):9128-32. PubMed ID: 8703917
    [Abstract] [Full Text] [Related]

  • 16. Ionic control of enzymic degradation of double-stranded RNA.
    Sorrentino S, Carsana A, Furia A, Doskocil J, Libonati M.
    Biochim Biophys Acta; 1980 Aug 26; 609(1):40-52. PubMed ID: 6250614
    [Abstract] [Full Text] [Related]

  • 17. Degradation of double-stranded RNA by a monomeric derivative of ribonuclease BS-1.
    Libonati M, Malorni MC, Parente A, D'Alessio G.
    Biochim Biophys Acta; 1975 Aug 06; 402(1):83-7. PubMed ID: 1098696
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J, Moldow C, Vicentini AM, Zelenko O, Jarai-Kote Z, Neumann U.
    Biochemistry; 1998 Jun 30; 37(26):9250-7. PubMed ID: 9649305
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.