These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 8648605

  • 1. CONCERTS: dynamic connection of fragments as an approach to de novo ligand design.
    Pearlman DA, Murcko MA.
    J Med Chem; 1996 Apr 12; 39(8):1651-63. PubMed ID: 8648605
    [Abstract] [Full Text] [Related]

  • 2. An automated method for dynamic ligand design.
    Miranker A, Karplus M.
    Proteins; 1995 Dec 12; 23(4):472-90. PubMed ID: 8749844
    [Abstract] [Full Text] [Related]

  • 3. Exhaustive docking of molecular fragments with electrostatic solvation.
    Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A.
    Proteins; 1999 Oct 01; 37(1):88-105. PubMed ID: 10451553
    [Abstract] [Full Text] [Related]

  • 4. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.
    Pierce AC, Rao G, Bemis GW.
    J Med Chem; 2004 May 20; 47(11):2768-75. PubMed ID: 15139755
    [Abstract] [Full Text] [Related]

  • 5. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H, Duan Z, Luo Q, Shi Y.
    Proteins; 1999 Sep 01; 36(4):462-70. PubMed ID: 10450088
    [Abstract] [Full Text] [Related]

  • 6. Ligand design package (Ludi--MSI) applied to known inhibitors of the HIV-1 protease. Test of performance.
    Bogacewicz R, Trylska J, Geller M.
    Acta Pol Pharm; 2000 Nov 01; 57 Suppl():25-8. PubMed ID: 11293255
    [Abstract] [Full Text] [Related]

  • 7. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 8. De novo ligand design to an ensemble of protein structures.
    Todorov NP, Buenemann CL, Alberts IL.
    Proteins; 2006 Jul 01; 64(1):43-59. PubMed ID: 16555306
    [Abstract] [Full Text] [Related]

  • 9. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E, Walters WP, Charifson PS.
    Proteins; 2004 Aug 01; 56(2):235-49. PubMed ID: 15211508
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A semiempirical free energy force field with charge-based desolvation.
    Huey R, Morris GM, Olson AJ, Goodsell DS.
    J Comput Chem; 2007 Apr 30; 28(6):1145-52. PubMed ID: 17274016
    [Abstract] [Full Text] [Related]

  • 13. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL, Lin JH, Andrew McCammon J.
    Chem Biol Drug Des; 2006 May 30; 67(5):336-45. PubMed ID: 16784458
    [Abstract] [Full Text] [Related]

  • 14. Structure-based design of novel, urea-containing FKBP12 inhibitors.
    Dragovich PS, Barker JE, French J, Imbacuan M, Kalish VJ, Kissinger CR, Knighton DR, Lewis CT, Moomaw EW, Parge HE, Pelletier LA, Prins TJ, Showalter RE, Tatlock JH, Tucker KD, Villafranca JE.
    J Med Chem; 1996 Apr 26; 39(9):1872-84. PubMed ID: 8627611
    [Abstract] [Full Text] [Related]

  • 15. A nonimmunosuppressant FKBP-12 ligand increases nerve regeneration.
    Gold BG, Zeleny-Pooley M, Wang MS, Chaturvedi P, Armistead DM.
    Exp Neurol; 1997 Oct 26; 147(2):269-78. PubMed ID: 9344552
    [Abstract] [Full Text] [Related]

  • 16. MCSS functionality maps for a flexible protein.
    Stultz CM, Karplus M.
    Proteins; 1999 Dec 01; 37(4):512-29. PubMed ID: 10651268
    [Abstract] [Full Text] [Related]

  • 17. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M.
    Proteins; 2004 Mar 01; 54(4):759-67. PubMed ID: 14997571
    [Abstract] [Full Text] [Related]

  • 18. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y, Yang CY, Wang S.
    J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623
    [Abstract] [Full Text] [Related]

  • 19. Improving binding mode predictions by docking into protein-specifically adapted potential fields.
    Radestock S, Böhm M, Gohlke H.
    J Med Chem; 2005 Aug 25; 48(17):5466-79. PubMed ID: 16107145
    [Abstract] [Full Text] [Related]

  • 20. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D, Liu MS, Ji B, Hwang K, Huang Y.
    J Chem Phys; 2009 Jun 07; 130(21):215102. PubMed ID: 19508101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.