These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
381 related items for PubMed ID: 8648621
1. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. Caprara MG, Mohr G, Lambowitz AM. J Mol Biol; 1996 Apr 05; 257(3):512-31. PubMed ID: 8648621 [Abstract] [Full Text] [Related]
2. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. Caprara MG, Myers CA, Lambowitz AM. J Mol Biol; 2001 Apr 27; 308(2):165-90. PubMed ID: 11327760 [Abstract] [Full Text] [Related]
3. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. Myers CA, Wallweber GJ, Rennard R, Kemel Y, Caprara MG, Mohr G, Lambowitz AM. J Mol Biol; 1996 Sep 20; 262(2):87-104. PubMed ID: 8831782 [Abstract] [Full Text] [Related]
5. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G, Rennard R, Cherniack AD, Stryker J, Lambowitz AM. J Mol Biol; 2001 Mar 16; 307(1):75-92. PubMed ID: 11243805 [Abstract] [Full Text] [Related]
7. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr G, Caprara MG, Guo Q, Lambowitz AM. Nature; 1994 Jul 14; 370(6485):147-50. PubMed ID: 8022484 [Abstract] [Full Text] [Related]
8. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4-P6 domain based on analysis of mutations at the junction of the P4-P6 stacked helices. Chen X, Gutell RR, Lambowitz AM. J Mol Biol; 2000 Aug 11; 301(2):265-83. PubMed ID: 10926509 [Abstract] [Full Text] [Related]
10. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Doherty EA, Doudna JA. Biochemistry; 1997 Mar 18; 36(11):3159-69. PubMed ID: 9115992 [Abstract] [Full Text] [Related]
11. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Mohr G, Lambowitz AM. Nature; 1991 Nov 14; 354(6349):164-7. PubMed ID: 1658660 [Abstract] [Full Text] [Related]
13. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF. Wallweber GJ, Mohr S, Rennard R, Caprara MG, Lambowitz AM. RNA; 1997 Feb 14; 3(2):114-31. PubMed ID: 9042940 [Abstract] [Full Text] [Related]
15. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA. Geese WJ, Waring RB. J Mol Biol; 2001 May 11; 308(4):609-22. PubMed ID: 11350164 [Abstract] [Full Text] [Related]
17. Self-assembly of a group I intron active site from its component tertiary structural domains. Doudna JA, Cech TR. RNA; 1995 Mar 11; 1(1):36-45. PubMed ID: 7489486 [Abstract] [Full Text] [Related]
18. Protein-dependent transition states for ribonucleoprotein assembly. Webb AE, Rose MA, Westhof E, Weeks KM. J Mol Biol; 2001 Jun 22; 309(5):1087-100. PubMed ID: 11399081 [Abstract] [Full Text] [Related]
20. Minimal catalytic domain of a group I self-splicing intron RNA. Ikawa Y, Shiraishi H, Inoue T. Nat Struct Biol; 2000 Nov 22; 7(11):1032-5. PubMed ID: 11062558 [Abstract] [Full Text] [Related] Page: [Next] [New Search]