These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
282 related items for PubMed ID: 8648634
1. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT, Murphy JE, Kantrowitz ER. J Mol Biol; 1996 Apr 05; 257(3):700-15. PubMed ID: 8648634 [Abstract] [Full Text] [Related]
2. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH, Lamoure C, Muller BH, Bulgakov OV, Lajeunesse E, Ménez A, Boulain JC. J Mol Biol; 2002 Mar 01; 316(4):941-53. PubMed ID: 11884134 [Abstract] [Full Text] [Related]
3. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L, Kantrowitz ER. Biochemistry; 1996 Feb 20; 35(7):2394-402. PubMed ID: 8652582 [Abstract] [Full Text] [Related]
4. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. Murphy JE, Tibbitts TT, Kantrowitz ER. J Mol Biol; 1995 Nov 03; 253(4):604-17. PubMed ID: 7473737 [Abstract] [Full Text] [Related]
5. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J, Stieglitz KA, Kantrowitz ER. Biochemistry; 2005 Jun 14; 44(23):8378-86. PubMed ID: 15938627 [Abstract] [Full Text] [Related]
10. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. Brautigam CA, Steitz TA. J Mol Biol; 1998 Mar 27; 277(2):363-77. PubMed ID: 9514742 [Abstract] [Full Text] [Related]
11. Structure and mechanism of alkaline phosphatase. Coleman JE. Annu Rev Biophys Biomol Struct; 1992 Mar 27; 21():441-83. PubMed ID: 1525473 [Abstract] [Full Text] [Related]
12. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B, Holtz KM, Kantrowitz ER. J Mol Biol; 2000 Jun 23; 299(5):1303-11. PubMed ID: 10873454 [Abstract] [Full Text] [Related]
14. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center. Sun L, Martin DC, Kantrowitz ER. Biochemistry; 1999 Mar 02; 38(9):2842-8. PubMed ID: 10052956 [Abstract] [Full Text] [Related]
15. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Janeway CM, Xu X, Murphy JE, Chaidaroglou A, Kantrowitz ER. Biochemistry; 1993 Feb 16; 32(6):1601-9. PubMed ID: 8431439 [Abstract] [Full Text] [Related]
16. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Brautigam CA, Sun S, Piccirilli JA, Steitz TA. Biochemistry; 1999 Jan 12; 38(2):696-704. PubMed ID: 9888810 [Abstract] [Full Text] [Related]
19. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD, Sidhu G, Pot I, Brayer GD, Withers SG, McIntosh LP. J Mol Biol; 2000 May 26; 299(1):255-79. PubMed ID: 10860737 [Abstract] [Full Text] [Related]