These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


386 related items for PubMed ID: 8649810

  • 21. Cell-cycle progression is not essential for c-Myc to block differentiation.
    Ryan KM, Birnie GD.
    Oncogene; 1997 Jun 12; 14(23):2835-43. PubMed ID: 9190900
    [Abstract] [Full Text] [Related]

  • 22. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc.
    Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z, Kim DW, Hofmann CS, Pianetti S, Romieu-Mourez R, Freedman LP, Sonenshein GE.
    Oncogene; 2001 Mar 29; 20(14):1688-702. PubMed ID: 11313917
    [Abstract] [Full Text] [Related]

  • 23. Sequential expression of the MAD family of transcriptional repressors during differentiation and development.
    Quéva C, Hurlin PJ, Foley KP, Eisenman RN.
    Oncogene; 1998 Feb 26; 16(8):967-77. PubMed ID: 9519870
    [Abstract] [Full Text] [Related]

  • 24. c-Myc does not require max for transcriptional activity in PC-12 cells.
    Ribon V, Leff T, Saltiel AR.
    Mol Cell Neurosci; 1994 Jun 26; 5(3):277-82. PubMed ID: 8087425
    [Abstract] [Full Text] [Related]

  • 25. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W, Schneider ML, Matt T, Kräutler B, Konrat R, Bister K.
    J Mol Biol; 2001 Apr 13; 307(5):1395-410. PubMed ID: 11292350
    [Abstract] [Full Text] [Related]

  • 26. Differential effects by Mad and Max on transformation by cellular and viral oncoproteins.
    Cerni C, Bousset K, Seelos C, Burkhardt H, Henriksson M, Lüscher B.
    Oncogene; 1995 Aug 03; 11(3):587-96. PubMed ID: 7630643
    [Abstract] [Full Text] [Related]

  • 27. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19.
    Edelhoff S, Ayer DE, Zervos AS, Steingrímsson E, Jenkins NA, Copeland NG, Eisenman RN, Brent R, Disteche CM.
    Oncogene; 1994 Feb 03; 9(2):665-8. PubMed ID: 8290278
    [Abstract] [Full Text] [Related]

  • 28. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2.
    Choe C, Chen N, Sawadogo M.
    Exp Cell Res; 2005 Jan 01; 302(1):1-10. PubMed ID: 15541720
    [Abstract] [Full Text] [Related]

  • 29. New Myc-interacting proteins: a second Myc network emerges.
    Sakamuro D, Prendergast GC.
    Oncogene; 1999 May 13; 18(19):2942-54. PubMed ID: 10378691
    [Abstract] [Full Text] [Related]

  • 30. Kinetics of myc-max-mad gene expression during hepatocyte proliferation in vivo: Differential regulation of mad family and stress-mediated induction of c-myc.
    Mauleon I, Lombard MN, Muñoz-Alonso MJ, Cañelles M, Leon J.
    Mol Carcinog; 2004 Feb 13; 39(2):85-90. PubMed ID: 14750213
    [Abstract] [Full Text] [Related]

  • 31. DNA binding by N- and L-Myc proteins.
    Ma A, Moroy T, Collum R, Weintraub H, Alt FW, Blackwell TK.
    Oncogene; 1993 Apr 13; 8(4):1093-8. PubMed ID: 8455937
    [Abstract] [Full Text] [Related]

  • 32. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1.
    Günes C, Lichtsteiner S, Vasserot AP, Englert C.
    Cancer Res; 2000 Apr 15; 60(8):2116-21. PubMed ID: 10786671
    [Abstract] [Full Text] [Related]

  • 33. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation.
    Min S, Mascarenhas NT, Taparowsky EJ.
    Oncogene; 1993 Oct 15; 8(10):2691-701. PubMed ID: 8378081
    [Abstract] [Full Text] [Related]

  • 34. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R, Chen JM, Huard S, Wang E.
    J Cell Biochem; 2005 Dec 01; 96(5):1071-85. PubMed ID: 16167342
    [Abstract] [Full Text] [Related]

  • 35. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1.
    Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA.
    Proc Natl Acad Sci U S A; 1994 Jun 07; 91(12):5503-7. PubMed ID: 8202517
    [Abstract] [Full Text] [Related]

  • 36. Sin3 corepressor function in Myc-induced transcription and transformation.
    Harper SE, Qiu Y, Sharp PA.
    Proc Natl Acad Sci U S A; 1996 Aug 06; 93(16):8536-40. PubMed ID: 8710905
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. The C. elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX.
    Yuan J, Tirabassi RS, Bush AB, Cole MD.
    Oncogene; 1998 Sep 03; 17(9):1109-18. PubMed ID: 9764821
    [Abstract] [Full Text] [Related]

  • 39. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max.
    Davis LJ, Halazonetis TD.
    Oncogene; 1993 Jan 03; 8(1):125-32. PubMed ID: 8423990
    [Abstract] [Full Text] [Related]

  • 40. Differential effects of Mxi1-SRalpha and Mxi1-SRbeta in Myc antagonism.
    Dugast-Darzacq C, Grange T, Schreiber-Agus NB.
    FEBS J; 2007 Sep 03; 274(17):4643-53. PubMed ID: 17697116
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.