These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 8653264
1. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Zhong XB, Hans de Jong J, Zabel P. Chromosome Res; 1996 Jan; 4(1):24-8. PubMed ID: 8653264 [Abstract] [Full Text] [Related]
2. Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Peterson DG, Lapitan NL, Stack SM. Genetics; 1999 May; 152(1):427-39. PubMed ID: 10224272 [Abstract] [Full Text] [Related]
4. FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Szinay D, Bai Y, Visser R, de Jong H. Cytogenet Genome Res; 2010 Jul; 129(1-3):199-210. PubMed ID: 20628252 [Abstract] [Full Text] [Related]
5. Role of fluorescence in situ hybridization in sequencing the tomato genome. Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK. Cytogenet Genome Res; 2009 Jul; 124(3-4):339-50. PubMed ID: 19556785 [Abstract] [Full Text] [Related]
6. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Cheng Z, Buell CR, Wing RA, Jiang J. Chromosome Res; 2002 Jul; 10(5):379-87. PubMed ID: 12296520 [Abstract] [Full Text] [Related]
7. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Szinay D, Chang SB, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, van Ham RC, de Jong H, Klein Lankhorst RM. Plant J; 2008 Nov; 56(4):627-37. PubMed ID: 18643986 [Abstract] [Full Text] [Related]
8. A high-resolution karyotype of cucumber (Cucumis sativus L. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Koo DH, Choi HW, Cho J, Hur Y, Bang JW. Genome; 2005 Jun; 48(3):534-40. PubMed ID: 16121249 [Abstract] [Full Text] [Related]
9. Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Kuo YT, Hsu HL, Yeh CH, Chang SB. Mol Cytogenet; 2016 Jun; 9():44. PubMed ID: 27275186 [Abstract] [Full Text] [Related]
10. Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EA, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RG, de Jong H, Bai Y. Genetics; 2008 Nov; 180(3):1319-28. PubMed ID: 18791231 [Abstract] [Full Text] [Related]
11. Localization of the genes for major ribosomal RNA on chromosomes of the house musk shrew, Suncus murinus, at meiotic and mitotic cells by fluorescence in situ hybridization and silver staining. Rogatcheva MB, Serdyukova NA, Biltueva LS, Perelman PL, Borodin PM, Oda S, Graphodatsky AS. Genes Genet Syst; 1997 Aug; 72(4):215-8. PubMed ID: 9418261 [Abstract] [Full Text] [Related]
12. In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Fuchs J, Kloos DU, Ganal MW, Schubert I. Chromosome Res; 1996 Jun; 4(4):277-81. PubMed ID: 8817067 [Abstract] [Full Text] [Related]
13. Higher axial-resolution and sensitivity pachytene fluorescence in situ hybridization protocol in tetraploid cotton. Wang K, Yang Z, Shu C, Hu J, Lin Q, Zhang W, Guo W, Zhang T. Chromosome Res; 2009 Jun; 17(8):1041-50. PubMed ID: 19844799 [Abstract] [Full Text] [Related]
14. Integration of the FISH pachytene and genetic maps of Medicago truncatula. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T. Plant J; 2001 Jul; 27(1):49-58. PubMed ID: 11489182 [Abstract] [Full Text] [Related]
15. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Celeda D, Aldinger K, Haar FM, Hausmann M, Durm M, Ludwig H, Cremer C. Cytometry; 1994 Sep 01; 17(1):13-25. PubMed ID: 8001456 [Abstract] [Full Text] [Related]
16. FISH mapping and molecular organization of the major repetitive sequences of tomato. Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H. Chromosome Res; 2008 Sep 01; 16(7):919-33. PubMed ID: 18688733 [Abstract] [Full Text] [Related]
17. Multicolored Fluorescent In Situ Hybridization to Assess Pairing Configurations at Metaphase I in Brassica Hybrids. Huteau V, Coriton O. Methods Mol Biol; 2020 Sep 01; 2061():169-180. PubMed ID: 31583659 [Abstract] [Full Text] [Related]
18. Mapping pachytene chromosomes of coffee using a modified protocol for fluorescence in situ hybridization. Iacia AA, Pinto-Maglio CA. AoB Plants; 2013 Sep 01; 5():plt040. PubMed ID: 24244840 [Abstract] [Full Text] [Related]
19. FISH to mitotic chromosomes and extended DNA fibres of Beta procumbens in a series of monosomic additions to beet (B. vulgaris). Mesbah M, Wennekes-Van Eden J, De Jong JH, De Bock TS, Lange W. Chromosome Res; 2000 Sep 01; 8(4):285-93. PubMed ID: 10919719 [Abstract] [Full Text] [Related]
20. A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Koo DH, Plaha P, Lim YP, Hur Y, Bang JW. Theor Appl Genet; 2004 Nov 01; 109(7):1346-52. PubMed ID: 15365626 [Abstract] [Full Text] [Related] Page: [Next] [New Search]