These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
544 related items for PubMed ID: 8660685
1. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1996 Jul 01; 331(1):69-78. PubMed ID: 8660685 [Abstract] [Full Text] [Related]
2. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1995 Dec 20; 324(2):282-92. PubMed ID: 8554320 [Abstract] [Full Text] [Related]
3. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation. Miura A, Tampo Y, Yonaha M. Biochem Mol Biol Int; 1995 Sep 20; 37(1):141-50. PubMed ID: 8653076 [Abstract] [Full Text] [Related]
8. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes. Tampo Y, Yonaha M. Arch Biochem Biophys; 1996 Oct 01; 334(1):163-74. PubMed ID: 8837752 [Abstract] [Full Text] [Related]
11. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes. Rao DN, Yang MX, Lasker JM, Cederbaum AI. Mol Pharmacol; 1996 May 01; 49(5):814-21. PubMed ID: 8622631 [Abstract] [Full Text] [Related]
12. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Kukiełka E, Dicker E, Cederbaum AI. Arch Biochem Biophys; 1994 Mar 01; 309(2):377-86. PubMed ID: 8135551 [Abstract] [Full Text] [Related]
13. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes. Clement B, Behrens D, Amschler J, Matschke K, Wolf S, Havemeyer A. Life Sci; 2005 May 27; 77(2):205-19. PubMed ID: 15862605 [Abstract] [Full Text] [Related]
14. Effects of citrinin on iron-redox cycle. Da Lozzo EJ, Mangrich AS, Rocha ME, de Oliveira MB, Carnieri EG. Cell Biochem Funct; 2002 Mar 27; 20(1):19-29. PubMed ID: 11835267 [Abstract] [Full Text] [Related]
15. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E, Puntarulo S, Cederbaum AI. Arch Biochem Biophys; 1989 Sep 27; 273(2):319-30. PubMed ID: 2774554 [Abstract] [Full Text] [Related]
17. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E, Cederbaum AI. Biochem Pharmacol; 1991 Jul 15; 42(3):529-35. PubMed ID: 1650215 [Abstract] [Full Text] [Related]
18. Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties. Tamura M, Yubisui T, Takeshita M. J Biochem; 1983 Nov 15; 94(5):1547-55. PubMed ID: 6654871 [Abstract] [Full Text] [Related]
19. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Perret A, Pompon D. Biochemistry; 1998 Aug 18; 37(33):11412-24. PubMed ID: 9708976 [Abstract] [Full Text] [Related]
20. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Kukiełka E, Cederbaum AI. Arch Biochem Biophys; 1990 Dec 18; 283(2):326-33. PubMed ID: 2275546 [Abstract] [Full Text] [Related] Page: [Next] [New Search]