These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


800 related items for PubMed ID: 8660690

  • 1. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ, Quinn GB, Smith ET, Barber MJ.
    Arch Biochem Biophys; 1996 Jul 01; 331(1):117-26. PubMed ID: 8660690
    [Abstract] [Full Text] [Related]

  • 2. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB, Trimboli AJ, Prosser IM, Barber MJ.
    Arch Biochem Biophys; 1996 Mar 01; 327(1):151-60. PubMed ID: 8615685
    [Abstract] [Full Text] [Related]

  • 3. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs.
    Barber MJ, Trimboli AJ, Nomikos S, Smith ET.
    Arch Biochem Biophys; 1997 Sep 01; 345(1):88-96. PubMed ID: 9281315
    [Abstract] [Full Text] [Related]

  • 4. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ, Desai SK, Marohnic CC.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):99-110. PubMed ID: 11566032
    [Abstract] [Full Text] [Related]

  • 5. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase.
    Marohnic CC, Barber MJ.
    Arch Biochem Biophys; 2001 May 15; 389(2):223-33. PubMed ID: 11339812
    [Abstract] [Full Text] [Related]

  • 6. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC, Crowley LJ, Davis CA, Smith ET, Barber MJ.
    Biochemistry; 2005 Feb 22; 44(7):2449-61. PubMed ID: 15709757
    [Abstract] [Full Text] [Related]

  • 7. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O, Scrutton NS, Munro AW.
    Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506
    [Abstract] [Full Text] [Related]

  • 8. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW, Crowley LJ, Barber MJ.
    Arch Biochem Biophys; 2006 Aug 01; 452(1):69-82. PubMed ID: 16814740
    [Abstract] [Full Text] [Related]

  • 9. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ, Scrutton NS, Munro AW.
    Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197
    [Abstract] [Full Text] [Related]

  • 10. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL, Kasper CB.
    Biochemistry; 1996 Jul 23; 35(29):9451-9. PubMed ID: 8755724
    [Abstract] [Full Text] [Related]

  • 11. Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain.
    Lu G, Lindqvist Y, Schneider G, Dwivedi U, Campbell W.
    J Mol Biol; 1995 May 19; 248(5):931-48. PubMed ID: 7760334
    [Abstract] [Full Text] [Related]

  • 12. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase.
    Roma GW, Crowley LJ, Davis CA, Barber MJ.
    Biochemistry; 2005 Oct 18; 44(41):13467-76. PubMed ID: 16216070
    [Abstract] [Full Text] [Related]

  • 13. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*.
    Davis CA, Crowley LJ, Barber MJ.
    Arch Biochem Biophys; 2004 Nov 15; 431(2):233-44. PubMed ID: 15488472
    [Abstract] [Full Text] [Related]

  • 14. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA, Dhawan IK, Johnson MK, Barber MJ.
    Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972
    [Abstract] [Full Text] [Related]

  • 15. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N, Lê KH, Terrier M, Lederer F.
    Biochemistry; 2007 Apr 17; 46(15):4661-70. PubMed ID: 17373777
    [Abstract] [Full Text] [Related]

  • 16. Assimilatory nitrate reductase: reduction and inhibition by NADH/NAD+ analogs.
    Trimboli AJ, Barber MJ.
    Arch Biochem Biophys; 1994 Nov 15; 315(1):48-53. PubMed ID: 7979404
    [Abstract] [Full Text] [Related]

  • 17. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC, Bewley MC, Barber MJ.
    Biochemistry; 2003 Sep 30; 42(38):11170-82. PubMed ID: 14503867
    [Abstract] [Full Text] [Related]

  • 18. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase.
    Shiraishi N, Croy C, Kaur J, Campbell WH.
    Arch Biochem Biophys; 1998 Oct 01; 358(1):104-15. PubMed ID: 9750171
    [Abstract] [Full Text] [Related]

  • 19. Characterization of C415 mutants of neuronal nitric oxide synthase.
    Richards MK, Clague MJ, Marletta MA.
    Biochemistry; 1996 Jun 18; 35(24):7772-80. PubMed ID: 8672477
    [Abstract] [Full Text] [Related]

  • 20. The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.
    Staples CR, Ameyibor E, Fu W, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB, Johnson MK.
    Biochemistry; 1996 Sep 03; 35(35):11425-34. PubMed ID: 8784198
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.