These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 8661867

  • 1. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture.
    Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P.
    Bull Environ Contam Toxicol; 1996 May; 56(5):817-24. PubMed ID: 8661867
    [No Abstract] [Full Text] [Related]

  • 2. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.
    Freedman DL, Gossett JM.
    Appl Environ Microbiol; 1989 Sep; 55(9):2144-51. PubMed ID: 2552919
    [Abstract] [Full Text] [Related]

  • 3. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.
    Fathepure BZ, Boyd SA.
    Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763
    [Abstract] [Full Text] [Related]

  • 4. Methanogenic and perchloroethylene-dechlorinating activity of anaerobic granular sludge.
    Kennes C, Veiga MC, Bhatnagar L.
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):484-8. PubMed ID: 9830099
    [Abstract] [Full Text] [Related]

  • 5. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms.
    Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC.
    Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003
    [Abstract] [Full Text] [Related]

  • 6. Study of the reductive dechlorination of pentachlorophenol by a methanogenic consortium.
    Juteau P, Beaudet R, McSween G, Lépine F, Bisaillon JG.
    Can J Microbiol; 1995 Oct 01; 41(10):862-8. PubMed ID: 8590401
    [Abstract] [Full Text] [Related]

  • 7. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater.
    Hoelen TP, Reinhard M.
    Biodegradation; 2004 Dec 01; 15(6):395-403. PubMed ID: 15562997
    [Abstract] [Full Text] [Related]

  • 8. [Biodegradation of tri- and perchloroethylene in sewage waters and soils by a microbial consortium of compost and phototrophic bacteria].
    Ten Khak Mun, Kirienko OA.
    Izv Akad Nauk Ser Biol; 2011 Dec 01; (5):625-9. PubMed ID: 22117431
    [Abstract] [Full Text] [Related]

  • 9. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.
    Fogel MM, Taddeo AR, Fogel S.
    Appl Environ Microbiol; 1986 Apr 01; 51(4):720-4. PubMed ID: 3085587
    [Abstract] [Full Text] [Related]

  • 10. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.
    Bouwer EJ, McCarty PL.
    Appl Environ Microbiol; 1983 Apr 01; 45(4):1286-94. PubMed ID: 6859849
    [Abstract] [Full Text] [Related]

  • 11. Reductive decolourisation of azo dyes by mesophilic and thermophilic methanogenic consortia.
    Cervantes FJ, dos Santos AB, de Madrid MP, Stams AJ, van Lier JB.
    Water Sci Technol; 2005 Apr 01; 52(1-2):351-6. PubMed ID: 16180449
    [Abstract] [Full Text] [Related]

  • 12. Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria.
    Holliger C, Schraa G, Stams AJ, Zehnder AJ.
    Biodegradation; 1990 Apr 01; 1(4):253-61. PubMed ID: 1368471
    [Abstract] [Full Text] [Related]

  • 13. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures.
    Bagley DM, Gossett JM.
    Appl Environ Microbiol; 1990 Aug 01; 56(8):2511-6. PubMed ID: 2403257
    [Abstract] [Full Text] [Related]

  • 14. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X, Li G, Zhang X, Zhang W.
    Huan Jing Ke Xue; 2002 Mar 01; 23(2):29-33. PubMed ID: 12048814
    [Abstract] [Full Text] [Related]

  • 15. Reductive dehalogenation of tetrachloroethylene by microorganisms: current knowledge and application strategies.
    Chen G.
    Appl Microbiol Biotechnol; 2004 Jan 01; 63(4):373-7. PubMed ID: 12811425
    [Abstract] [Full Text] [Related]

  • 16. Extension of Anaerobic Digestion Model No. 1 with processes of sulfate reduction.
    Fedorovich V, Lens P, Kalyuzhnyi S.
    Appl Biochem Biotechnol; 2003 Jan 01; 109(1-3):33-45. PubMed ID: 12794282
    [Abstract] [Full Text] [Related]

  • 17. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.
    Kästner M.
    Appl Environ Microbiol; 1991 Jul 01; 57(7):2039-46. PubMed ID: 1892393
    [Abstract] [Full Text] [Related]

  • 18. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.
    Vogel TM, McCarty PL.
    Appl Environ Microbiol; 1985 May 01; 49(5):1080-3. PubMed ID: 3923927
    [Abstract] [Full Text] [Related]

  • 19. Bioremediation. Anaerobes to the rescue.
    Lovley DR.
    Science; 2001 Aug 24; 293(5534):1444-6. PubMed ID: 11520973
    [No Abstract] [Full Text] [Related]

  • 20. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S, Semprini L.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.