These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 8661867

  • 21. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater.
    Chambon JC, Bjerg PL, Scheutz C, Baelum J, Jakobsen R, Binning PJ.
    Biotechnol Bioeng; 2013 Jan; 110(1):1-23. PubMed ID: 22926627
    [Abstract] [Full Text] [Related]

  • 22. 2-Bromoethanesulfonate affects bacteria in a trichloroethene-dechlorinating culture.
    Chiu PC, Lee M.
    Appl Environ Microbiol; 2001 May; 67(5):2371-4. PubMed ID: 11319126
    [Abstract] [Full Text] [Related]

  • 23. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium.
    van Eekert MH, Schröder TJ, van Rhee A, Stams AJ, Schraa G, Field JA.
    Bioresour Technol; 2001 Apr; 77(2):163-70. PubMed ID: 11272023
    [Abstract] [Full Text] [Related]

  • 24. Dechlorination of polychlorinated methanes by a sequential methanogenic-denitrifying bioreactor system.
    Yu Z, Smith GB.
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):484-9. PubMed ID: 10803908
    [Abstract] [Full Text] [Related]

  • 25. Acceleration of perchloroethylene dechlorination by extracellular secretions from Microbacterium in a mixed culture containing Desulfitobacterium.
    Wan J, Chen C, Chen J, Miao Q, Liu Y, Ye J, Chen K, Jin Y, Tang X, Shen C.
    Environ Pollut; 2019 Feb; 245():651-657. PubMed ID: 30481679
    [Abstract] [Full Text] [Related]

  • 26. Anaerobic biodegradability of Tween surfactants used as a carbon source for the microbial reductive dechlorination of hexachlorobenzene.
    Yeh DH, Pavlostathis SG.
    Water Sci Technol; 2005 Feb; 52(1-2):343-9. PubMed ID: 16180448
    [Abstract] [Full Text] [Related]

  • 27. Breathing with chlorinated solvents.
    McCarty PL.
    Science; 1997 Jun 06; 276(5318):1521-2. PubMed ID: 9190688
    [No Abstract] [Full Text] [Related]

  • 28. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts.
    Puigserver D, Cortés A, Viladevall M, Nogueras X, Parker BL, Carmona JM.
    J Contam Hydrol; 2014 Nov 01; 168():25-40. PubMed ID: 25278314
    [Abstract] [Full Text] [Related]

  • 29. Reductive dechlorination of tetrachloroethene by a high rate anaerobic microbial consortium.
    Zinder SH, Gossett JM.
    Environ Health Perspect; 1995 Jun 01; 103 Suppl 5(Suppl 5):5-7. PubMed ID: 8565911
    [Abstract] [Full Text] [Related]

  • 30. Effective bead preparation of coimmobilized methanogenic and methanotrophic bacteria for tetrachloroethene degradation.
    Sung-In Y, Youn-Kyoo C, Byung-Chan L.
    Biodegradation; 2003 Oct 01; 14(5):347-55. PubMed ID: 14571951
    [Abstract] [Full Text] [Related]

  • 31. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply.
    Heimann AC, Friis AK, Jakobsen R.
    Water Res; 2005 Sep 01; 39(15):3579-86. PubMed ID: 16085242
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture.
    DiStefano TD, Gossett JM, Zinder SH.
    Appl Environ Microbiol; 1992 Nov 01; 58(11):3622-9. PubMed ID: 1482184
    [Abstract] [Full Text] [Related]

  • 35. 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.
    Kuder T, van Breukelen BM, Vanderford M, Philp P.
    Environ Sci Technol; 2013 Sep 03; 47(17):9668-77. PubMed ID: 23895211
    [Abstract] [Full Text] [Related]

  • 36. The role of microbial reductive dechlorination of TCE at a phytoremediation site.
    Godsy EM, Warren E, Paganelli VV.
    Int J Phytoremediation; 2003 Sep 03; 5(1):73-87. PubMed ID: 12710236
    [Abstract] [Full Text] [Related]

  • 37. Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies.
    Harkness M, Fisher A, Lee MD, Mack EE, Payne JA, Dworatzek S, Roberts J, Acheson C, Herrmann R, Possolo A.
    J Contam Hydrol; 2012 Apr 01; 131(1-4):100-18. PubMed ID: 22366331
    [Abstract] [Full Text] [Related]

  • 38. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment.
    Lee J, Lee TK.
    J Microbiol Biotechnol; 2016 Jan 01; 26(1):120-9. PubMed ID: 26502734
    [Abstract] [Full Text] [Related]

  • 39. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).
    Cretnik S, Thoreson KA, Bernstein A, Ebert K, Buchner D, Laskov C, Haderlein S, Shouakar-Stash O, Kliegman S, McNeill K, Elsner M.
    Environ Sci Technol; 2013 Jul 02; 47(13):6855-63. PubMed ID: 23627862
    [Abstract] [Full Text] [Related]

  • 40. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment.
    Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, Oh HM, Kim HS.
    Biotechnol Lett; 2010 Dec 02; 32(12):1829-35. PubMed ID: 20714784
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.