These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 8672505

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The Kdp-ATPase of Escherichia coli mediates an ATP-dependent, K+-independent electrogenic partial reaction.
    Fendler K, Dröse S, Epstein W, Bamberg E, Altendorf K.
    Biochemistry; 1999 Feb 09; 38(6):1850-6. PubMed ID: 10026265
    [Abstract] [Full Text] [Related]

  • 3. Structure and function of the Kdp-ATPase of Escherichia coli.
    Altendorf K, Gassel M, Puppe W, Möllenkamp T, Zeeck A, Boddien C, Fendler K, Bamberg E, Dröse S.
    Acta Physiol Scand Suppl; 1998 Aug 09; 643():137-46. PubMed ID: 9789555
    [Abstract] [Full Text] [Related]

  • 4. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M, Altendorf K.
    Biochemistry; 2005 Jun 14; 44(23):8260-6. PubMed ID: 15938615
    [Abstract] [Full Text] [Related]

  • 5. The conserved dipole in transmembrane helix 5 of KdpB in the Escherichia coli KdpFABC P-type ATPase is crucial for coupling and the electrogenic K+-translocation step.
    Becker D, Fendler K, Altendorf K, Greie JC.
    Biochemistry; 2007 Dec 04; 46(48):13920-8. PubMed ID: 17994765
    [Abstract] [Full Text] [Related]

  • 6. Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.
    Schrader M, Fendler K, Bamberg E, Gassel M, Epstein W, Altendorf K, Dröse S.
    Biophys J; 2000 Aug 04; 79(2):802-13. PubMed ID: 10920013
    [Abstract] [Full Text] [Related]

  • 7. K+-dependence of electrogenic transport by the NaK-ATPase.
    Gropp T, Cornelius F, Fendler K.
    Biochim Biophys Acta; 1998 Jan 19; 1368(2):184-200. PubMed ID: 9459597
    [Abstract] [Full Text] [Related]

  • 8. ATP-Dependent human erythrocyte glutathione-conjugate transporter. II. Functional reconstitution of transport activity.
    Awasthi S, Singhal SS, Pikula S, Piper JT, Srivastava SK, Torman RT, Bandorowicz-Pikula J, Lin JT, Singh SV, Zimniak P, Awasthi YC.
    Biochemistry; 1998 Apr 14; 37(15):5239-48. PubMed ID: 9548755
    [Abstract] [Full Text] [Related]

  • 9. Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
    Howard EM, Roepe PD.
    Biochemistry; 2003 Apr 01; 42(12):3544-55. PubMed ID: 12653559
    [Abstract] [Full Text] [Related]

  • 10. FITC binding site and p-nitrophenyl phosphatase activity of the Kdp-ATPase of Escherichia coli.
    Bramkamp M, Gassel M, Altendorf K.
    Biochemistry; 2004 Apr 20; 43(15):4559-67. PubMed ID: 15078102
    [Abstract] [Full Text] [Related]

  • 11. Na,K-ATPase reconstituted in liposomes: effects of lipid composition on hydrolytic activity and enzyme orientation.
    de Lima Santos H, Lopes ML, Maggio B, Ciancaglini P.
    Colloids Surf B Biointerfaces; 2005 Apr 10; 41(4):239-48. PubMed ID: 15748819
    [Abstract] [Full Text] [Related]

  • 12. Improvement in K+-limited growth rate associated with expression of the N-terminal fragment of one subunit (KdpA) of the multisubunit Kdp transporter in Escherichia coli.
    Sardesai AA, Gowrishankar J.
    J Bacteriol; 2001 Jun 10; 183(11):3515-20. PubMed ID: 11344160
    [Abstract] [Full Text] [Related]

  • 13. Cs(+) induces the kdp operon of Escherichia coli by lowering the intracellular K(+) concentration.
    Jung K, Krabusch M, Altendorf K.
    J Bacteriol; 2001 Jun 10; 183(12):3800-3. PubMed ID: 11371546
    [Abstract] [Full Text] [Related]

  • 14. ATP-Dependent colchicine transport by human erythrocyte glutathione conjugate transporter.
    Awasthi S, Singhal SS, Pandya U, Gopal S, Zimniak P, Singh SV, Awasthi YC.
    Toxicol Appl Pharmacol; 1999 Mar 15; 155(3):215-26. PubMed ID: 10079207
    [Abstract] [Full Text] [Related]

  • 15. Kdp-like system in Salmonella typhimurium LT-2.
    Garcia-Cuellar C, Cienfuegos L, Bautista R, Castillo-Rivera L, Alvarez-Jacobs J, Guerrero AL, de la Garza M.
    Rev Latinoam Microbiol; 1995 Mar 15; 37(3):227-36. PubMed ID: 8850341
    [Abstract] [Full Text] [Related]

  • 16. Osmoregulation in Bacillus subtilis under potassium limitation: a new inducible K+-stimulated, VO4(3-)-inhibited ATPase.
    Sebestian J, Petrmichlová Z, Sebestianová S, Náprstek J, Svobodová J.
    Can J Microbiol; 2001 Dec 15; 47(12):1116-25. PubMed ID: 11822838
    [Abstract] [Full Text] [Related]

  • 17. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M, Altendorf K.
    Biochemistry; 2004 Sep 28; 43(38):12289-96. PubMed ID: 15379567
    [Abstract] [Full Text] [Related]

  • 18. [Membrane ATPase of Vibrio alginolyticus. Ion transport activity and homology with F0F1-ATPase from E. coli].
    Dmitriev OIu, Dann S, Krasnosel'skaia IA, Papa S, Skulachev VP.
    Biokhimiia; 1992 Oct 28; 57(10):1499-507. PubMed ID: 1457596
    [Abstract] [Full Text] [Related]

  • 19. [Reconstitution of high-affinity galactose transport of Salmonella typhimurium in proteoliposomes: energization by lipoamide and NAD or by the membrane potential; inhibition by ATP].
    Richarme G.
    C R Acad Sci III; 1987 Oct 28; 305(3):55-8. PubMed ID: 3113676
    [Abstract] [Full Text] [Related]

  • 20. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R, Altendorf K.
    Biochim Biophys Acta; 1993 Jun 10; 1143(1):62-6. PubMed ID: 8499455
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.