These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 8679961

  • 1. Study of red blood cell aggregation by admittance measurements.
    Pribush A, Meyerstein D, Meyerstein N.
    Biorheology; 1996; 33(2):139-51. PubMed ID: 8679961
    [Abstract] [Full Text] [Related]

  • 2. Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method.
    Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N.
    Biorheology; 1999; 36(5-6):411-23. PubMed ID: 10818639
    [Abstract] [Full Text] [Related]

  • 3. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N.
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [Abstract] [Full Text] [Related]

  • 4. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK, Meiselman HJ, Wenby RB, Fisher TC.
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [Abstract] [Full Text] [Related]

  • 5. Rheological properties of fetal red cells with special reference to aggregability and disaggregability analyzed by light transmission and laser backscattering techniques.
    El Bouhmadi A, Boulot P, Laffargue F, Brun JF.
    Clin Hemorheol Microcirc; 2000; 22(2):79-90. PubMed ID: 10831059
    [Abstract] [Full Text] [Related]

  • 6. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N, Riha P, Ivanov I.
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [Abstract] [Full Text] [Related]

  • 7. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A, Meyerstein D, Meiselman HJ, Meyerstein N.
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [Abstract] [Full Text] [Related]

  • 8. Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects.
    Picart C, Piau JM, Galliard H, Carpentier P.
    Biorheology; 1998; 35(4-5):335-53. PubMed ID: 10474659
    [Abstract] [Full Text] [Related]

  • 9. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T.
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [Abstract] [Full Text] [Related]

  • 10. A sheep model for the study of hemorheology with assisted circulation. Effect of an axial flow blood pump.
    Kameneva MV, Antaki JF, Butler KC, Watach MJ, Kormos RL, Griffith BP, Borovetz HS.
    ASAIO J; 1994; 40(4):959-63. PubMed ID: 7858332
    [Abstract] [Full Text] [Related]

  • 11. The role of erythrocyte aggregation in the abnormal hemorheology of multiple myeloma patients.
    Pribush A, Hatskelzon L, Mazor D, Katorza E, Zilberman-Kravits D, Meyerstein N.
    Clin Hemorheol Microcirc; 2006; 34(4):529-36. PubMed ID: 16687792
    [Abstract] [Full Text] [Related]

  • 12. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E, Yianneskis M.
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [Abstract] [Full Text] [Related]

  • 13. Cellular determinants of low-shear blood viscosity.
    Baskurt OK, Meiselman HJ.
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [Abstract] [Full Text] [Related]

  • 14. Effects of fibrinogen and alpha2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates.
    Kirschkamp T, Schmid-Schönbein H, Weinberger A, Smeets R.
    Ther Apher Dial; 2008 Oct; 12(5):360-7. PubMed ID: 18937718
    [Abstract] [Full Text] [Related]

  • 15. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA.
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [Abstract] [Full Text] [Related]

  • 16. Simultaneous monitoring of electrical conductance and light transmittance during red blood cell aggregation.
    Baskurt OK, Uyuklu M, Meiselman HJ.
    Biorheology; 2009 Jan; 46(3):239-49. PubMed ID: 19581730
    [Abstract] [Full Text] [Related]

  • 17. Blood rheology of Weddell seals and bowhead whales.
    Castellini M, Elsner R, Baskurt OK, Wenby RB, Meiselman HJ.
    Biorheology; 2006 Jan; 43(1):57-69. PubMed ID: 16627927
    [Abstract] [Full Text] [Related]

  • 18. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation.
    Yalcin O, Meiselman HJ, Armstrong JK, Baskurt OK.
    Biorheology; 2005 Jan; 42(6):511-20. PubMed ID: 16369087
    [Abstract] [Full Text] [Related]

  • 19. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ, Lee YJ, Nam JH, Chung S, Shin S.
    J Biomech; 2010 Feb 10; 43(3):546-50. PubMed ID: 19878949
    [Abstract] [Full Text] [Related]

  • 20. RBC aggregation: laboratory data and models.
    Meiselman HJ, Neu B, Rampling MW, Baskurt OK.
    Indian J Exp Biol; 2007 Jan 10; 45(1):9-17. PubMed ID: 17249322
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.