These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 8683586
41. The roles of Glu-327 and His-446 in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by NMR spectroscopic and mutational analyses of the enzyme in the transient phosphohistidine intermediate complex. Okar DA, Live DH, Kirby TL, Karschnia EJ, von Weymarn LB, Armitage IM, Lange AJ. Biochemistry; 1999 Apr 06; 38(14):4471-9. PubMed ID: 10194369 [Abstract] [Full Text] [Related]
42. Conformational study of silk-like peptides containing the calcium-binding sequence from calbindin D9k using 13C CP/MAS NMR spectroscopy. Asakura T, Hamada M, Nakazawa Y, Ha SW, Knight DP. Biomacromolecules; 2006 Feb 06; 7(2):627-34. PubMed ID: 16471940 [Abstract] [Full Text] [Related]
43. Generation of the O630 photointermediate of bacteriorhodopsin is controlled by the state of protonation of several protein residues. Bressler S, Friedman N, Li Q, Ottolenghi M, Saha C, Sheves M. Biochemistry; 1999 Feb 16; 38(7):2018-25. PubMed ID: 10026284 [Abstract] [Full Text] [Related]
44. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin. Dillet V, Dyson HJ, Bashford D. Biochemistry; 1998 Jul 14; 37(28):10298-306. PubMed ID: 9665738 [Abstract] [Full Text] [Related]
45. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS. Biochemistry; 2004 Apr 13; 43(14):4082-91. PubMed ID: 15065850 [Abstract] [Full Text] [Related]
46. Electrostatic interactions in protein solution--a comparison between Poisson-Boltzmann and Monte Carlo calculations. Fushiki M, Svensson B, Jönsson B, Woodward CE. Biopolymers; 1991 Sep 13; 31(10):1149-58. PubMed ID: 1790295 [Abstract] [Full Text] [Related]
48. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. Simonson T, Carlsson J, Case DA. J Am Chem Soc; 2004 Apr 07; 126(13):4167-80. PubMed ID: 15053606 [Abstract] [Full Text] [Related]
49. pKa measurements from nuclear magnetic resonance of tyrosine-150 in class C beta-lactamase. Kato-Toma Y, Iwashita T, Masuda K, Oyama Y, Ishiguro M. Biochem J; 2003 Apr 01; 371(Pt 1):175-81. PubMed ID: 12513696 [Abstract] [Full Text] [Related]
50. Determination of the side chain pKa values of the lysine residues in calmodulin. Zhang M, Vogel HJ. J Biol Chem; 1993 Oct 25; 268(30):22420-8. PubMed ID: 8226750 [Abstract] [Full Text] [Related]
51. Force field-dependent structural divergence revealed during long time simulations of Calbindin d9k. Project E, Nachliel E, Gutman M. J Comput Chem; 2010 Jul 15; 31(9):1864-72. PubMed ID: 20033912 [Abstract] [Full Text] [Related]
52. Binding of Ca2+ to calbindin D9k: structural stability and function at high salt concentration. Kesvatera T, Jönsson B, Thulin E, Linse S. Biochemistry; 1994 Nov 29; 33(47):14170-6. PubMed ID: 7947829 [Abstract] [Full Text] [Related]
53. Focusing of the electrostatic potential at EF-hands of calbindin D(9k): titration of acidic residues. Kesvatera T, Jönsson B, Thulin E, Linse S. Proteins; 2001 Nov 01; 45(2):129-35. PubMed ID: 11562942 [Abstract] [Full Text] [Related]
55. Individual ionization constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR. Oda Y, Yamazaki T, Nagayama K, Kanaya S, Kuroda Y, Nakamura H. Biochemistry; 1994 May 03; 33(17):5275-84. PubMed ID: 7909691 [Abstract] [Full Text] [Related]
56. The role of protein surface charges in ion binding. Linse S, Brodin P, Johansson C, Thulin E, Grundström T, Forsén S. Nature; 1988 Oct 13; 335(6191):651-2. PubMed ID: 3173484 [Abstract] [Full Text] [Related]
57. Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR. Bartik K, Redfield C, Dobson CM. Biophys J; 1994 Apr 13; 66(4):1180-4. PubMed ID: 8038389 [Abstract] [Full Text] [Related]
58. Ionization properties of titratable groups in ribonuclease T1. I. pKa values in the native state determined by two-dimensional heteronuclear NMR spectroscopy. Spitzner N, Löhr F, Pfeiffer S, Koumanov A, Karshikoff A, Rüterjans H. Eur Biophys J; 2001 Jul 13; 30(3):186-97. PubMed ID: 11508838 [Abstract] [Full Text] [Related]
59. Ion-binding properties of calbindin D9k: a Monte Carlo simulation study. Svensson B, Jönsson B, Woodward CE, Linse S. Biochemistry; 1991 May 28; 30(21):5209-17. PubMed ID: 2036387 [Abstract] [Full Text] [Related]
60. Molecular recognition study on the binding of calcium to calbindin D9k based on 3D reference interaction site model theory. Kiyota Y, Takeda-Shitaka M. J Phys Chem B; 2014 Oct 02; 118(39):11496-503. PubMed ID: 25251030 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]