These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 8685
1. The many roles of cytochrome b-5 in hepatic microsomes. Schenkman JB, Jansson I, Robie-Suh KM. Life Sci; 1976 Sep 01; 19(5):611-23. PubMed ID: 8685 [No Abstract] [Full Text] [Related]
2. Role of cytochrome b5 in the NADH synergism of NADPH-dependent reactions of the cytochrome P-450 monooxygenase system of hepatic microsomes. Mannerign GJ. Adv Exp Med Biol; 1975 Sep 01; 58(00):405-34. PubMed ID: 239543 [No Abstract] [Full Text] [Related]
3. Studies on three microsomal electron transfer enzyme systems. Specificity of electron flow pathways. Jansson I, Schenkman JB. Arch Biochem Biophys; 1977 Jan 15; 178(1):89-107. PubMed ID: 13723 [No Abstract] [Full Text] [Related]
4. Immunochemical evidence for the participation of cytochrome b5 in microsomal stearyl-CoA desaturation reaction. Oshino N, Omura T. Arch Biochem Biophys; 1973 Aug 15; 157(2):395-404. PubMed ID: 4147187 [No Abstract] [Full Text] [Related]
5. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system. Lu AY, Levin W, West SB, Vore M, Ryan D, Kuntzman R, Conney AH. Adv Exp Med Biol; 1975 Aug 15; 58(00):447-66. PubMed ID: 239545 [No Abstract] [Full Text] [Related]
7. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes. Mannering GJ, Kuwahara S, Omura T. Biochem Biophys Res Commun; 1974 Mar 25; 57(2):476-81. PubMed ID: 4151403 [No Abstract] [Full Text] [Related]
8. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system. Correia MA, Mannering GJ. Mol Pharmacol; 1973 Jul 25; 9(4):455-69. PubMed ID: 4146889 [No Abstract] [Full Text] [Related]
9. Alteration of hepatic microsomal enzymes by griseofulvin treatment of mice. Denk H, Eckerstorfer R, Talcott RE, Schenkman JB. Biochem Pharmacol; 1977 Jun 15; 26(12):1125-30. PubMed ID: 19022 [No Abstract] [Full Text] [Related]
13. Influences of substrates of different microsomal electron transfer pathways on the oxidation-reduction kinetics of microsomal cytochrome b5. Jansson I, Schenkman JB. Arch Biochem Biophys; 1978 Jan 15; 185(1):251-61. PubMed ID: 23728 [No Abstract] [Full Text] [Related]
14. The effect of extra bound cytochrome b-5 on cytochrome P-450-dependent enzyme activities in liver microsomes. Hrycay EG, Estabrook RW. Biochem Biophys Res Commun; 1974 Sep 23; 60(2):771-8. PubMed ID: 4153715 [No Abstract] [Full Text] [Related]
15. A comparison of some effects of dimethyl sulphoxide and dimethyl sulphone on rat liver microsomal enzymes. Stock BH, Fouts JR. Biochem Pharmacol; 1971 Jul 23; 20(7):1525-36. PubMed ID: 4399524 [No Abstract] [Full Text] [Related]
17. Effect of chronic exposure to carbon disulphide upon some components of the electron transport system in rat liver microsomes. Sokal JA. Biochem Pharmacol; 1973 Jan 01; 22(1):129-32. PubMed ID: 4148685 [No Abstract] [Full Text] [Related]
18. The role of the stimulation of nadph-cytochrome P-450 reductase activity in hepatic, microsomal mixed function oxidase activity. Holtzman JL. Pharmacol Ther B; 1979 Jan 01; 4(3):601-27. PubMed ID: 224402 [No Abstract] [Full Text] [Related]