These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 8688838

  • 1. Melanin granule model for laser-induced thermal damage in the retina.
    Thompson CR, Gerstman BS, Jacques SL, Rogers ME.
    Bull Math Biol; 1996 May; 58(3):513-53. PubMed ID: 8688838
    [Abstract] [Full Text] [Related]

  • 2. Melanin granule models for the processes of laser-induced thermal damage in pigmented retinal tissues. I. Modeling of laser-induced heating of melanosomes and selective thermal processes in retinal tissues.
    Pustovalov VK, Jean B.
    Bull Math Biol; 2007 Jan; 69(1):245-63. PubMed ID: 16850352
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Theoretical investigations of laser thermal retinal injury.
    Birngruber R, Hillenkamp F, Gabel VP.
    Health Phys; 1985 Jun; 48(6):781-96. PubMed ID: 3997529
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Using a melanin granule lattice model to study the thermal effects of pulsed and scanning light irradiations through a measurement aperture.
    Kim DH.
    J Biomed Opt; 2011 Dec; 16(12):125002. PubMed ID: 22191915
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Retinal damage from intense visible light.
    Zheltov G, Glazkov V, Podol'tzef A, Linnik L, Privalov A.
    Health Phys; 1989 May; 56(5):625-30. PubMed ID: 2651360
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina.
    Till SJ, Milsom PK, Rowlands G.
    Bull Math Biol; 2004 Jul; 66(4):791-808. PubMed ID: 15210319
    [Abstract] [Full Text] [Related]

  • 13. Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range.
    Schulmeister K, Husinsky J, Seiser B, Edthofer F, Fekete B, Farmer L, Lund DJ.
    J Biomed Opt; 2008 Jul; 13(5):054038. PubMed ID: 19021418
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm.
    Vincelette RL, Rockwell BA, Oliver JW, Kumru SS, Thomas RJ, Schuster KJ, Noojin GD, Shingledecker AD, Stolarski DJ, Welch AJ.
    Lasers Surg Med; 2009 Jul; 41(5):382-90. PubMed ID: 19533764
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses.
    Sun H, Hosszufalusi N, Mikula ER, Juhasz T.
    J Biomed Opt; 2011 Oct; 16(10):108001. PubMed ID: 22029369
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.