These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 8695649
21. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim MB, Chock PB, Stadtman ER. Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216 [Abstract] [Full Text] [Related]
22. A mechanism for NADPH inhibition of catalase compound II formation. Hillar A, Nicholls P. FEBS Lett; 1992 Dec 14; 314(2):179-82. PubMed ID: 1459249 [Abstract] [Full Text] [Related]
23. A mechanistic study of the formation of hydroxyl radicals induced by horseradish peroxidase with NADH. Miura T. J Biochem; 2012 Aug 14; 152(2):199-206. PubMed ID: 22718789 [Abstract] [Full Text] [Related]
30. Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes. de Groot H, Auferkamp O, Bramey T, de Groot K, Kirsch M, Korth HG, Petrat F, Sustmann R. Free Radic Res; 2006 Jan 14; 40(1):67-74. PubMed ID: 16298761 [Abstract] [Full Text] [Related]
31. Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin. Samuni U, Czapski G, Goldstein S. Biochim Biophys Acta; 2016 Jul 14; 1860(7):1409-16. PubMed ID: 27062906 [Abstract] [Full Text] [Related]
32. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures. Wang Y, Hougaard AB, Paulander W, Skibsted LH, Ingmer H, Andersen ML. Appl Environ Microbiol; 2015 Sep 14; 81(18):6393-8. PubMed ID: 26150471 [Abstract] [Full Text] [Related]
33. Efficiency of bovine liver catalase as a catalyst to cleave H2O2 added continually to buffer solutions. Ibrahim M, Schlegel HG. Biotechnol Bioeng; 1980 Sep 14; 22(9):1895-1906. PubMed ID: 7407340 [Abstract] [Full Text] [Related]
34. Reversible binding and inhibition of catalase by nitric oxide. Brown GC. Eur J Biochem; 1995 Aug 15; 232(1):188-91. PubMed ID: 7556149 [Abstract] [Full Text] [Related]
36. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Raducan A, Cantemir AR, Puiu M, Oancea D. Bioprocess Biosyst Eng; 2012 Nov 15; 35(9):1523-30. PubMed ID: 22565543 [Abstract] [Full Text] [Related]
37. Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates. Hara I, Ichise N, Kojima K, Kondo H, Ohgiya S, Matsuyama H, Yumoto I. Biochemistry; 2007 Jan 09; 46(1):11-22. PubMed ID: 17198371 [Abstract] [Full Text] [Related]
38. Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site. Mazumdar A, Adak S, Chatterjee R, Banerjee RK. Biochem J; 1997 Jun 15; 324 ( Pt 3)(Pt 3):713-9. PubMed ID: 9210393 [Abstract] [Full Text] [Related]
39. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Gaetani GF, Ferraris AM, Sanna P, Kirkman HN. Biochem J; 2005 Feb 01; 385(Pt 3):763-8. PubMed ID: 15456401 [Abstract] [Full Text] [Related]