These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 8702573

  • 1. Primary alcohols modulate the activation of the G protein-coupled receptor rhodopsin by a lipid-mediated mechanism.
    Mitchell DC, Lawrence JT, Litman BJ.
    J Biol Chem; 1996 Aug 09; 271(32):19033-6. PubMed ID: 8702573
    [Abstract] [Full Text] [Related]

  • 2. Effect of ethanol on metarhodopsin II formation is potentiated by phospholipid polyunsaturation.
    Mitchell DC, Litman BJ.
    Biochemistry; 1994 Nov 01; 33(43):12752-6. PubMed ID: 7947679
    [Abstract] [Full Text] [Related]

  • 3. Effect of ethanol and osmotic stress on receptor conformation. Reduced water activity amplifies the effect of ethanol on metarhodopsin II formation.
    Mitchell DC, Litman BJ.
    J Biol Chem; 2000 Feb 25; 275(8):5355-60. PubMed ID: 10681509
    [Abstract] [Full Text] [Related]

  • 4. The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction.
    Litman BJ, Niu SL, Polozova A, Mitchell DC.
    J Mol Neurosci; 2001 Feb 25; 16(2-3):237-42; discussion 279-84. PubMed ID: 11478379
    [Abstract] [Full Text] [Related]

  • 5. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
    Mitchell DC, Niu SL, Litman BJ.
    J Biol Chem; 2001 Nov 16; 276(46):42801-6. PubMed ID: 11544258
    [Abstract] [Full Text] [Related]

  • 6. Role of phosphatidylserine in the MI-MII equilibrium of rhodopsin.
    Gibson NJ, Brown MF.
    Biochem Biophys Res Commun; 1991 Apr 30; 176(2):915-21. PubMed ID: 2025300
    [Abstract] [Full Text] [Related]

  • 7. Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex.
    Niu SL, Mitchell DC, Litman BJ.
    J Biol Chem; 2001 Nov 16; 276(46):42807-11. PubMed ID: 11544259
    [Abstract] [Full Text] [Related]

  • 8. Deoxylysolecithin and a new biphenyl detergent as solubilizing agents for bovine rhodopsin. Functional test by formation of metarhodopsin II and binding of G-protein.
    Schleicher A, Franke R, Hofmann KP, Finkelmann H, Welte W.
    Biochemistry; 1987 Sep 08; 26(18):5908-16. PubMed ID: 3118952
    [Abstract] [Full Text] [Related]

  • 9. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ, Brown MF.
    Photochem Photobiol; 1991 Dec 08; 54(6):985-92. PubMed ID: 1775536
    [Abstract] [Full Text] [Related]

  • 10. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation.
    Mitchell DC, Litman BJ.
    Biochemistry; 1999 Jun 15; 38(24):7617-23. PubMed ID: 10387000
    [Abstract] [Full Text] [Related]

  • 11. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC, Kibelbek J, Litman BJ.
    Biochemistry; 1991 Jan 08; 30(1):37-42. PubMed ID: 1899020
    [Abstract] [Full Text] [Related]

  • 12. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH, Gibson SK, Liebman PA.
    Biochemistry; 1999 May 25; 38(21):6862-78. PubMed ID: 10346908
    [Abstract] [Full Text] [Related]

  • 13. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC, Straume M, Litman BJ.
    Biochemistry; 1992 Jan 28; 31(3):662-70. PubMed ID: 1731921
    [Abstract] [Full Text] [Related]

  • 14. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C, Kühn H, Chabre M.
    Eur J Biochem; 1983 Nov 15; 136(3):489-99. PubMed ID: 6315431
    [Abstract] [Full Text] [Related]

  • 15. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ, Brown MF.
    Biochemistry; 1993 Mar 09; 32(9):2438-54. PubMed ID: 8443184
    [Abstract] [Full Text] [Related]

  • 16. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1998 Aug 18; 37(33):11393-8. PubMed ID: 9708973
    [Abstract] [Full Text] [Related]

  • 17. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.
    Melia TJ, Cowan CW, Angleson JK, Wensel TG.
    Biophys J; 1997 Dec 18; 73(6):3182-91. PubMed ID: 9414230
    [Abstract] [Full Text] [Related]

  • 18. Displacement of rhodopsin by GDP from three-loop interaction with transducin depends critically on the diphosphate beta-position.
    Kahlert M, König B, Hofmann KP.
    J Biol Chem; 1990 Nov 05; 265(31):18928-32. PubMed ID: 2229054
    [Abstract] [Full Text] [Related]

  • 19. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A, Schroder K, Fischer T, Hofmann KP.
    J Biol Chem; 2000 Dec 01; 275(48):37679-85. PubMed ID: 10969086
    [Abstract] [Full Text] [Related]

  • 20. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S, Palczewski K, Hofmann KP.
    Biochemistry; 1996 Mar 05; 35(9):2901-8. PubMed ID: 8608127
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.