These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 8707333
1. Molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide in vivo. Igietseme JU. Immunology; 1996 May; 88(1):1-5. PubMed ID: 8707333 [Abstract] [Full Text] [Related]
2. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide. Igietseme JU. Immunology; 1996 Jan; 87(1):1-8. PubMed ID: 8666420 [Abstract] [Full Text] [Related]
3. Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide. Igietseme JU, Uriri IM, Chow M, Abe E, Rank RG. Biochem Biophys Res Commun; 1997 Mar 27; 232(3):595-601. PubMed ID: 9126319 [Abstract] [Full Text] [Related]
5. Integrin-mediated epithelial-T cell interaction enhances nitric oxide production and increased intracellular inhibition of Chlamydia. Igietseme JU, Uriri IM, Hawkins R, Rank RG. J Leukoc Biol; 1996 May 27; 59(5):656-62. PubMed ID: 8656050 [Abstract] [Full Text] [Related]
6. Production of nitric oxide (NO) is not essential for protection against acute Toxoplasma gondii infection in IRF-1-/- mice. Khan IA, Matsuura T, Fonseka S, Kasper LH. J Immunol; 1996 Jan 15; 156(2):636-43. PubMed ID: 8543815 [Abstract] [Full Text] [Related]
7. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Roshick C, Wood H, Caldwell HD, McClarty G. Infect Immun; 2006 Jan 15; 74(1):225-38. PubMed ID: 16368976 [Abstract] [Full Text] [Related]
8. Inducible nitric oxide synthase does not affect resolution of murine chlamydial genital tract infections or eradication of chlamydiae in primary murine cell culture. Ramsey KH, Miranpuri GS, Poulsen CE, Marthakis NB, Braune LM, Byrne GI. Infect Immun; 1998 Feb 15; 66(2):835-8. PubMed ID: 9453651 [Abstract] [Full Text] [Related]
9. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Igietseme JU, Ramsey KH, Magee DM, Williams DM, Kincy TJ, Rank RG. Reg Immunol; 1993 Feb 15; 5(6):317-24. PubMed ID: 8068534 [Abstract] [Full Text] [Related]
10. Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome. Ramsey KH, Miranpuri GS, Sigar IM, Ouellette S, Byrne GI. Infect Immun; 2001 Aug 15; 69(8):5131-7. PubMed ID: 11447195 [Abstract] [Full Text] [Related]
11. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. Perry LL, Su H, Feilzer K, Messer R, Hughes S, Whitmire W, Caldwell HD. J Immunol; 1999 Mar 15; 162(6):3541-8. PubMed ID: 10092812 [Abstract] [Full Text] [Related]
12. Plac8-dependent and inducible NO synthase-dependent mechanisms clear Chlamydia muridarum infections from the genital tract. Johnson RM, Kerr MS, Slaven JE. J Immunol; 2012 Feb 15; 188(4):1896-904. PubMed ID: 22238459 [Abstract] [Full Text] [Related]
13. Role of nitric oxide in the inhibition of cytochrome P450 in the liver of mice infected with Chlamydia trachomatis. Khatsenko OG, Barteneva NS, de la Maza LM, Kikkawa Y. Biochem Pharmacol; 1998 Jun 01; 55(11):1835-42. PubMed ID: 9714302 [Abstract] [Full Text] [Related]
14. Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. Yang X, Brunham RC. J Immunol; 1998 Aug 01; 161(3):1439-46. PubMed ID: 9686609 [Abstract] [Full Text] [Related]
15. Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. Rottenberg ME, Gigliotti Rothfuchs AC, Gigliotti D, Svanholm C, Bandholtz L, Wigzell H. J Immunol; 1999 Mar 01; 162(5):2829-36. PubMed ID: 10072530 [Abstract] [Full Text] [Related]
16. Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI. Infect Immun; 2001 Dec 01; 69(12):7374-9. PubMed ID: 11705910 [Abstract] [Full Text] [Related]
17. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Igietseme JU, Magee DM, Williams DM, Rank RG. Infect Immun; 1994 Nov 01; 62(11):5195-7. PubMed ID: 7927806 [Abstract] [Full Text] [Related]
18. Bacterial superantigen-induced human lymphocyte responses are nitric oxide dependent and mediated by IL-12 and IFN-gamma. Sriskandan S, Evans TJ, Cohen J. J Immunol; 1996 Apr 01; 156(7):2430-5. PubMed ID: 8786301 [Abstract] [Full Text] [Related]
19. An in vitro model for immune control of chlamydial growth in polarized epithelial cells. Igietseme JU, Wyrick PB, Goyeau D, Rank RG. Infect Immun; 1994 Aug 01; 62(8):3528-35. PubMed ID: 8039923 [Abstract] [Full Text] [Related]
20. A role for gamma interferon-induced nitric oxide in pulmonary clearance of Cryptococcus neoformans. Lovchik JA, Lyons CR, Lipscomb MF. Am J Respir Cell Mol Biol; 1995 Jul 01; 13(1):116-24. PubMed ID: 7598935 [Abstract] [Full Text] [Related] Page: [Next] [New Search]