These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 8714201

  • 1. Interaction of yeast elongation factor 3 with polynucleotides, ribosomal RNA and ribosomal subunits.
    Kovalchuke O, Chakraburtty K.
    Indian J Biochem Biophys; 1995 Dec; 32(6):336-42. PubMed ID: 8714201
    [Abstract] [Full Text] [Related]

  • 2. A monoclonal antibody specific for carboxy-terminal region of yeast translation elongation factor-3 inhibits ribosome-activated ATPase activity but not intrinsic ATPase activity.
    Masahiro U, Atsushi T, Kazutoshi N, Miho I, Makoto I, Mikio A.
    Biochem Mol Biol Int; 1996 May; 39(2):227-34. PubMed ID: 8799448
    [Abstract] [Full Text] [Related]

  • 3. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H, Chan YL, Wool IG.
    J Mol Biol; 2009 Feb 27; 386(3):802-13. PubMed ID: 19154738
    [Abstract] [Full Text] [Related]

  • 4. Transfer RNA binding to 80S ribosomes from yeast: evidence for three sites.
    Triana F, Nierhaus KH, Chakraburtty K.
    Biochem Mol Biol Int; 1994 Aug 27; 33(5):909-15. PubMed ID: 7987260
    [Abstract] [Full Text] [Related]

  • 5. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR, Wool IG.
    J Mol Biol; 1999 Jan 15; 285(2):567-80. PubMed ID: 9878430
    [Abstract] [Full Text] [Related]

  • 6. Intrinsic ATPase activity of yeast peptide chain elongation factor 3(EF-3) and its direct interaction with various nucleotides.
    Miyazaki M, Uritani M, Kagiyama H.
    Nucleic Acids Symp Ser; 1986 Jan 15; (17):171-4. PubMed ID: 2951656
    [Abstract] [Full Text] [Related]

  • 7. Has1p, a member of the DEAD-box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae.
    Emery B, de la Cruz J, Rocak S, Deloche O, Linder P.
    Mol Microbiol; 2004 Apr 15; 52(1):141-58. PubMed ID: 15049817
    [Abstract] [Full Text] [Related]

  • 8. Functional interaction of yeast elongation factor 3 with yeast ribosomes.
    Chakraburtty K.
    Int J Biochem Cell Biol; 1999 Jan 15; 31(1):163-73. PubMed ID: 10216951
    [Abstract] [Full Text] [Related]

  • 9. Nuclear export and cytoplasmic maturation of ribosomal subunits.
    Zemp I, Kutay U.
    FEBS Lett; 2007 Jun 19; 581(15):2783-93. PubMed ID: 17509569
    [Abstract] [Full Text] [Related]

  • 10. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U, Remme J, Ehrenberg M, Bilgin N.
    J Mol Biol; 1997 Sep 26; 272(3):327-35. PubMed ID: 9325093
    [Abstract] [Full Text] [Related]

  • 11. Interactions of elongation factor EF-P with the Escherichia coli ribosome.
    Aoki H, Xu J, Emili A, Chosay JG, Golshani A, Ganoza MC.
    FEBS J; 2008 Feb 26; 275(4):671-81. PubMed ID: 18201202
    [Abstract] [Full Text] [Related]

  • 12. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL, Sitikov AS, Wool IG.
    J Mol Biol; 2000 May 19; 298(5):795-805. PubMed ID: 10801349
    [Abstract] [Full Text] [Related]

  • 13. Comparative analysis of ribosome-associated adenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 from Saccharomyces cerevisiae.
    Kovalchuke O, Chakraburtty K.
    Eur J Biochem; 1994 Nov 15; 226(1):133-40. PubMed ID: 7957240
    [Abstract] [Full Text] [Related]

  • 14. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites.
    Pisarev AV, Shirokikh NE, Hellen CU.
    C R Biol; 2005 Jul 15; 328(7):589-605. PubMed ID: 15992743
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3).
    Miyazaki M, Kagiyama H.
    J Biochem; 1990 Dec 15; 108(6):1001-8. PubMed ID: 2150964
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding.
    Valásek L, Phan L, Schoenfeld LW, Valásková V, Hinnebusch AG.
    EMBO J; 2001 Feb 15; 20(4):891-904. PubMed ID: 11179233
    [Abstract] [Full Text] [Related]

  • 19. Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation.
    van Beekvelt CA, Kooi EA, de Graaff-Vincent M, Riet J, Venema J, Raué HA.
    J Mol Biol; 2000 Feb 11; 296(1):7-17. PubMed ID: 10656814
    [Abstract] [Full Text] [Related]

  • 20. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor.
    Triana-Alonso FJ, Chakraburtty K, Nierhaus KH.
    J Biol Chem; 1995 Sep 01; 270(35):20473-8. PubMed ID: 7657623
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.