These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


624 related items for PubMed ID: 8718880

  • 1. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G, Liu RQ, Taylor KL, Xiang H, Price J, Dunaway-Mariano D.
    Biochemistry; 1996 Aug 20; 35(33):10879-85. PubMed ID: 8718880
    [Abstract] [Full Text] [Related]

  • 2. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J, Lu X, Wei Y, Luo L, Dunaway-Mariano D, Carey PR.
    Biochemistry; 2003 Aug 12; 42(31):9482-90. PubMed ID: 12899635
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H, Dong J, Carey PR, Dunaway-Mariano D.
    Biochemistry; 1999 Mar 30; 38(13):4207-13. PubMed ID: 10194337
    [Abstract] [Full Text] [Related]

  • 5. Modulating electron density in the bound product, 4-hydroxybenzoyl-CoA, by mutations in 4-chlorobenzoyl-CoA dehalogenase near the 4-hydroxy group.
    Dong J, Xiang H, Luo L, Dunaway-Mariano D, Carey PR.
    Biochemistry; 1999 Mar 30; 38(13):4198-206. PubMed ID: 10194336
    [Abstract] [Full Text] [Related]

  • 6. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS.
    Biochemistry; 2004 Apr 13; 43(14):4082-91. PubMed ID: 15065850
    [Abstract] [Full Text] [Related]

  • 7. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase.
    Clarkson J, Tonge PJ, Taylor KL, Dunaway-Mariano D, Carey PR.
    Biochemistry; 1997 Aug 19; 36(33):10192-9. PubMed ID: 9254617
    [Abstract] [Full Text] [Related]

  • 8. Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study.
    Wu J, Xu D, Lu X, Wang C, Guo H, Dunaway-Mariano D.
    Biochemistry; 2006 Jan 10; 45(1):102-12. PubMed ID: 16388585
    [Abstract] [Full Text] [Related]

  • 9. Histidine 90 function in 4-chlorobenzoyl-coenzyme a dehalogenase catalysis.
    Zhang W, Wei Y, Luo L, Taylor KL, Yang G, Dunaway-Mariano D, Benning MM, Holden HM.
    Biochemistry; 2001 Nov 13; 40(45):13474-82. PubMed ID: 11695894
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R, Wheatley JL, Relyea HA, Rimkus S, van der Donk WA.
    Biochemistry; 2005 Mar 29; 44(12):4765-74. PubMed ID: 15779903
    [Abstract] [Full Text] [Related]

  • 12. Stereospecific alkylation of cis-3-chloroacrylic acid dehalogenase by (R)-oxirane-2-carboxylate: analysis and mechanistic implications.
    Poelarends GJ, Serrano H, Johnson WH, Whitman CP.
    Biochemistry; 2004 Jun 08; 43(22):7187-96. PubMed ID: 15170356
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.
    Xiang H, Luo L, Taylor KL, Dunaway-Mariano D.
    Biochemistry; 1999 Jun 15; 38(24):7638-52. PubMed ID: 10387003
    [Abstract] [Full Text] [Related]

  • 15. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis.
    Godavarti R, Cooney CL, Langer R, Sasisekharan R.
    Biochemistry; 1996 May 28; 35(21):6846-52. PubMed ID: 8639636
    [Abstract] [Full Text] [Related]

  • 16. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z, Kiss L, Hughes MA.
    Arch Biochem Biophys; 1994 Oct 28; 314(1):142-52. PubMed ID: 7944386
    [Abstract] [Full Text] [Related]

  • 17. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.
    Li C, Montgomery MG, Mohammed F, Li JJ, Wood SP, Bugg TD.
    J Mol Biol; 2005 Feb 11; 346(1):241-51. PubMed ID: 15663941
    [Abstract] [Full Text] [Related]

  • 18. Role of active site binding interactions in 4-chlorobenzoyl-coenzyme A dehalogenase catalysis.
    Luo L, Taylor KL, Xiang H, Wei Y, Zhang W, Dunaway-Mariano D.
    Biochemistry; 2001 Dec 25; 40(51):15684-92. PubMed ID: 11747444
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. HlyC, the internal protein acyltransferase that activates hemolysin toxin: role of conserved histidine, serine, and cysteine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Trent MS, Worsham LM, Ernst-Fonberg ML.
    Biochemistry; 1999 Mar 16; 38(11):3433-9. PubMed ID: 10079090
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.