These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 8721313

  • 1. [A comparative study of the intracellular regulation of transport ATPase activity in non-nucleated erythrocytes].
    Matskevich IuA, Kazennov AM, Shalabodov AD.
    Zh Evol Biokhim Fiziol; 1994; 30(5):690-7. PubMed ID: 8721313
    [Abstract] [Full Text] [Related]

  • 2. [The activity of transport ATPases and the characteristics of the protein-lipid composition of the membranes of anuclear erythrocytes in a number of mammals].
    Matskevich IuA, Kazennov AM, Maslova MN.
    Zh Evol Biokhim Fiziol; 1994; 30(4):497-504. PubMed ID: 7863741
    [Abstract] [Full Text] [Related]

  • 3. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes].
    Matskevich IuA, Kazennov AM.
    Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317
    [Abstract] [Full Text] [Related]

  • 4. Species variability of erythrocyte transport ATPases in mammals.
    Kazennov AM, Maslova MN, Matskevich Yu A, Rustamov FA, Shalabodov AD.
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jan; 119(1):169-75. PubMed ID: 9530818
    [Abstract] [Full Text] [Related]

  • 5. [Comparative research on erythrocyte anionic adenosine triphosphatase in vertebrates].
    Ivashchenko AT, Li T, Uteulin KR.
    Zh Evol Biokhim Fiziol; 1985 Jan; 21(2):197-201. PubMed ID: 2986389
    [Abstract] [Full Text] [Related]

  • 6. Activity of Na-K-ATPase and Ca-Mg-ATPase in red blood cell membranes of lead-depleted rats.
    Eder K, Reichlmayr-Lais AM, Kirchgessner M.
    J Trace Elem Electrolytes Health Dis; 1990 Mar; 4(1):21-4. PubMed ID: 1967007
    [Abstract] [Full Text] [Related]

  • 7. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison.
    Vincenzi FF.
    Prog Clin Biol Res; 1981 Mar; 55():363-83. PubMed ID: 6117080
    [Abstract] [Full Text] [Related]

  • 8. Rheologic properties of mammalian erythrocytes: relationship to transport ATPases.
    Katyukhin LN, Kazennov AM, Maslova MN, Matskevich YuA.
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jul; 120(3):493-8. PubMed ID: 9787808
    [Abstract] [Full Text] [Related]

  • 9. [Characteristics of adenosine triphosphatase activity in carp erythrocytes treated with saponin].
    Skriabin GA, Petruniaka VV, Orlov SN, Kotelevtsev SV, Kozlov IuP.
    Biokhimiia; 1990 Aug; 55(8):1503-6. PubMed ID: 1963091
    [Abstract] [Full Text] [Related]

  • 10. [Na K ATPase activity in mammalian erythrocytes].
    Kazennov AM, Maslova MN, Shalabodov AD.
    Biokhimiia; 1984 Jul; 49(7):1089-95. PubMed ID: 6089915
    [Abstract] [Full Text] [Related]

  • 11. [The role of proteins of membrane skeleton of non-nucleated erythrocytes in the functioning of membrane enzymes].
    Kazennov AM, Maslova MN, Shalabodov AD.
    Dokl Akad Nauk SSSR; 1990 Jul; 312(1):223-6. PubMed ID: 2170091
    [No Abstract] [Full Text] [Related]

  • 12. [HPLC method for measuring (Na(+)-K(+)) ATPase and (Ca(++)-Mg(++)) ATPase in erythrocytes from different species of mammals].
    Palma F, Ligi F, Soverchia C, Fioritti A.
    Boll Soc Ital Biol Sper; 1991 Aug; 67(8):759-66. PubMed ID: 1667079
    [Abstract] [Full Text] [Related]

  • 13. [Changes of physiological and biochemical characteristics of rat erythrocytes after blood loss].
    Maslova MN, Kazennov AM, Katiukhin LN, Novozhilov AV, Skverchinskaia EA, Tavrovskaia TV.
    Zh Evol Biokhim Fiziol; 2007 Aug; 43(5):414-8. PubMed ID: 18038638
    [Abstract] [Full Text] [Related]

  • 14. [Mechanism of the activating effect of detergents and chelating agents on the Na, K-ATPase activity of erythrocyte ghosts].
    Kazennov AM, Maslova MN, Shalabodov AD.
    Biokhimiia; 1986 Feb; 51(2):224-9. PubMed ID: 3008861
    [Abstract] [Full Text] [Related]

  • 15. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia.
    Kazennov AM, Procházka J, Pelouch V, Ostádal B, Maslova NM.
    Physiol Bohemoslov; 1986 Feb; 35(5):406-13. PubMed ID: 3025901
    [Abstract] [Full Text] [Related]

  • 16. [The evaluation of the role of endogenous Ca-dependent regulators and protein kinases in activating and inhibiting ion-transport ATPases].
    Petruniaka VV, Paniushkina EA.
    Tsitologiia; 1991 Feb; 33(11):49-54. PubMed ID: 1668051
    [Abstract] [Full Text] [Related]

  • 17. [Variations in ATPase activities of erythrocytic membrane and endocytic ionic levels in cases with pregnancy induced hypertension].
    Dai LT, Chou SH.
    Zhonghua Fu Chan Ke Za Zhi; 1994 Jul; 29(7):411-3, 445. PubMed ID: 8001418
    [Abstract] [Full Text] [Related]

  • 18. [Effects of furyl-dihydropyridines I on lipid peroxides of ischemic myocardium and ATPases activity of erythrocyte membranes in rats].
    Liu DQ, Pang ZQ, Zhao DH, Sheng BH.
    Zhongguo Yao Li Xue Bao; 1991 May; 12(3):253-6. PubMed ID: 1664169
    [Abstract] [Full Text] [Related]

  • 19. Phospholipid N-methylation in diabetic erythrocytes: effects on membrane Na+, K+ ATPase activity.
    Kowluru A, Kowluru RA.
    Cell Biochem Funct; 1992 Jun; 10(2):95-101. PubMed ID: 1321009
    [Abstract] [Full Text] [Related]

  • 20. Erythrocyte membrane ATPase activity of G6PD-deficient individuals and the effect of primaquine metabolite(s) on membrane ATPase enzymes.
    Akoğlu T, Ozdoğu H, Erdoğan R, Ozer FL.
    J Trop Med Hyg; 1984 Oct; 87(5):219-24. PubMed ID: 6152296
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.