These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 8725517

  • 21. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T, Liberman MC.
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [Abstract] [Full Text] [Related]

  • 22. Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans.
    Collet L, Veuillet E, Moulin A, Morlet T, Giraud AL, Micheyl C, Chéry-Croze S.
    Br J Audiol; 1994 Dec; 28(4-5):213-8. PubMed ID: 7735149
    [Abstract] [Full Text] [Related]

  • 23. On the Relationship Between Musicianship and Contralateral Suppression of Transient-Evoked Otoacoustic Emissions.
    Stuart A, Daughtrey ER.
    J Am Acad Audiol; 2016 Apr; 27(4):333-44. PubMed ID: 27115243
    [Abstract] [Full Text] [Related]

  • 24. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.
    Stuart A, Preast JL.
    Ear Hear; 2012 Apr; 33(3):421-9. PubMed ID: 22246207
    [Abstract] [Full Text] [Related]

  • 25. Right-ear advantage drives the link between olivocochlear efferent 'antimasking' and speech-in-noise listening benefits.
    Bidelman GM, Bhagat SP.
    Neuroreport; 2015 May 27; 26(8):483-7. PubMed ID: 25919996
    [Abstract] [Full Text] [Related]

  • 26. Medial olivocochlear reflex effects on amplitude growth functions of long- and short-latency components of click-evoked otoacoustic emissions in humans.
    Goodman SS, Boothalingam S, Lichtenhan JT.
    J Neurophysiol; 2021 May 01; 125(5):1938-1953. PubMed ID: 33625926
    [Abstract] [Full Text] [Related]

  • 27. [Contralateral modification of transitory evoked otoacoustic emissions].
    Ganz M, von Specht H, Kevanishvili Z.
    Laryngorhinootologie; 1997 May 01; 76(5):278-83. PubMed ID: 9280414
    [Abstract] [Full Text] [Related]

  • 28. Effect of olivocochlear bundle section on evoked otoacoustic emissions recorded using maximum length sequences.
    Hine JE, Thornton AR, Brookes GB.
    Hear Res; 1997 Jun 01; 108(1-2):28-36. PubMed ID: 9213119
    [Abstract] [Full Text] [Related]

  • 29. Medial olivocochlear efferent system in humans studied with amplitude-modulated tones.
    Maison S, Micheyl C, Collet L.
    J Neurophysiol; 1997 Apr 01; 77(4):1759-68. PubMed ID: 9114234
    [Abstract] [Full Text] [Related]

  • 30. The Effect of Otoacoustic Emission Stimulus Level on the Strength and Detectability of the Medial Olivocochlear Reflex.
    Lewis JD.
    Ear Hear; 2019 Apr 01; 40(6):1391-1403. PubMed ID: 30896525
    [Abstract] [Full Text] [Related]

  • 31. The effect of midline petrous apex lesions on tests of afferent and efferent auditory function.
    Hurley RM, Hurley A, Berlin CI.
    Ear Hear; 2002 Jun 01; 23(3):224-34. PubMed ID: 12072614
    [Abstract] [Full Text] [Related]

  • 32. Peripheral auditory lateralization assessment using TEOAEs.
    Khalfa S, Micheyl C, Veuillet E, Collet L.
    Hear Res; 1998 Jul 01; 121(1-2):29-34. PubMed ID: 9682805
    [Abstract] [Full Text] [Related]

  • 33. Contralateral suppression of transient evoked otoacoustic emissions: intra-individual variability in tinnitus and normal subjects.
    Graham RL, Hazell JW.
    Br J Audiol; 1994 Jul 01; 28(4-5):235-45. PubMed ID: 7735152
    [Abstract] [Full Text] [Related]

  • 34. Adversarial relationship between combined medial olivocochlear (MOC) and middle-ear-muscle (MEM) reflexes and alarm-in-noise detection thresholds under negative signal-to-noise ratios (SNRs).
    Karunarathne B, Wang T, So RHY, Kam ACS, Meddis R.
    Hear Res; 2018 Sep 01; 367():124-128. PubMed ID: 30107299
    [Abstract] [Full Text] [Related]

  • 35. Effect of Contralateral Medial Olivocochlear Feedback on Perceptual Estimates of Cochlear Gain and Compression.
    Fletcher MD, Krumbholz K, de Boer J.
    J Assoc Res Otolaryngol; 2016 Dec 01; 17(6):559-575. PubMed ID: 27550069
    [Abstract] [Full Text] [Related]

  • 36. Assessment of otoacoustic emission suppression in women with migraine and phonophobia.
    Joffily L, de Melo Tavares de Lima MA, Vincent MB, Frota SM.
    Neurol Sci; 2016 May 01; 37(5):703-9. PubMed ID: 27032400
    [Abstract] [Full Text] [Related]

  • 37. Contralateral Acoustic Effect of Transient Evoked Otoacoustic Emissions in Neonates.
    Hamburger A, Ari-Even Roth D, Muchnik C, Kuint J, Hildesheimer M.
    Int Tinnitus J; 1998 May 01; 4(1):53-57. PubMed ID: 10753386
    [Abstract] [Full Text] [Related]

  • 38. Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays.
    Lewis JD.
    J Assoc Res Otolaryngol; 2018 Feb 01; 19(1):53-65. PubMed ID: 29134475
    [Abstract] [Full Text] [Related]

  • 39. Binaural noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral or contralateral noise.
    Berlin CI, Hood LJ, Hurley AE, Wen H, Kemp DT.
    Hear Res; 1995 Jul 01; 87(1-2):96-103. PubMed ID: 8567448
    [Abstract] [Full Text] [Related]

  • 40. Contralateral and ipsilateral 'suppression' of evoked otoacoustic emissions at high stimulation rates.
    Thornton AR.
    Br J Audiol; 1994 Jul 01; 28(4-5):227-34. PubMed ID: 7735151
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.