These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The postnatal development of sarcoplasmic reticulum Ca2+ transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Simonides WS, van Hardeveld C. Endocrinology; 1989 Mar; 124(3):1145-52. PubMed ID: 2917509 [Abstract] [Full Text] [Related]
7. Early enhancement of passive potassium efflux from rat liver by thyroid hormone: relation to induction of Na,K-ATPase. Haber RS, Loeb JN. Endocrinology; 1984 Jul; 115(1):291-7. PubMed ID: 6329651 [Abstract] [Full Text] [Related]
8. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease. Benders AA, Wevers RA, Veerkamp JH. Acta Physiol Scand; 1996 Mar; 156(3):355-67. PubMed ID: 8729696 [Abstract] [Full Text] [Related]
16. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Galuska D, Kotova O, Barrès R, Chibalina D, Benziane B, Chibalin AV. Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E38-49. PubMed ID: 19366873 [Abstract] [Full Text] [Related]
17. Iodothyronine deiodinases and the control of plasma and tissue thyroid hormone levels in hyperthyroid tilapia (Oreochromis niloticus). Van der Geyten S, Byamungu N, Reyns GE, Kühn ER, Darras VM. J Endocrinol; 2005 Mar; 184(3):467-79. PubMed ID: 15749806 [Abstract] [Full Text] [Related]
18. Thyroid hormone increases mRNA and protein expression of Na+-K+-ATPase alpha2 and beta1 subunits in human skeletal muscles. Phakdeekitcharoen B, Phudhichareonrat S, Pookarnjanamorakot C, Kijkunasathian C, Tubtong N, Kittikanokrat W, Radinahamed P. J Clin Endocrinol Metab; 2007 Jan; 92(1):353-8. PubMed ID: 17032726 [Abstract] [Full Text] [Related]