These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 8730806
1. Cortical representation of self-paced finger movement. Larsson J, Gulyás B, Roland PE. Neuroreport; 1996 Jan 31; 7(2):463-8. PubMed ID: 8730806 [Abstract] [Full Text] [Related]
2. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H. Brain Res; 1996 Apr 15; 716(1-2):141-8. PubMed ID: 8738230 [Abstract] [Full Text] [Related]
3. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Brain; 2000 Jun 15; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [Abstract] [Full Text] [Related]
5. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Wessel K, Zeffiro T, Lou JS, Toro C, Hallett M. Brain; 1995 Apr 15; 118 ( Pt 2)():379-93. PubMed ID: 7735880 [Abstract] [Full Text] [Related]
6. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. Brain; 1998 Aug 15; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [Abstract] [Full Text] [Related]
7. A positron emission tomography study of self-paced finger movements at different frequencies. Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H. Neuroscience; 1999 Aug 15; 92(1):107-12. PubMed ID: 10392834 [Abstract] [Full Text] [Related]
8. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RS. J Neurophysiol; 1991 Jun 15; 65(6):1392-401. PubMed ID: 1875248 [Abstract] [Full Text] [Related]
9. Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y. J Neurosci; 1997 Dec 15; 17(24):9667-74. PubMed ID: 9391021 [Abstract] [Full Text] [Related]
10. Movement- and task-related activations of motor cortical areas: a positron emission tomographic study. Remy P, Zilbovicius M, Leroy-Willig A, Syrota A, Samson Y. Ann Neurol; 1994 Jul 15; 36(1):19-26. PubMed ID: 8024256 [Abstract] [Full Text] [Related]
11. Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K. J Neurophysiol; 2000 Mar 15; 83(3):1701-9. PubMed ID: 10712490 [Abstract] [Full Text] [Related]
12. Sequential activation of supplementary motor area and primary motor cortex during self-paced finger movement in human evaluated by functional MRI. Wildgruber D, Erb M, Klose U, Grodd W. Neurosci Lett; 1997 May 23; 227(3):161-4. PubMed ID: 9185675 [Abstract] [Full Text] [Related]
13. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ. J Neurophysiol; 1998 Feb 23; 79(2):1070-80. PubMed ID: 9463462 [Abstract] [Full Text] [Related]
14. The pre-supplementary and primary motor areas generate rhythm for voluntary eye opening and closing movements. Suzuki Y, Kiyosawa M, Mochizuki M, Ishiwata K, Ishii K. Tohoku J Exp Med; 2010 Oct 23; 222(2):97-104. PubMed ID: 20877165 [Abstract] [Full Text] [Related]
15. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. Deiber MP, Honda M, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1999 Jun 23; 81(6):3065-77. PubMed ID: 10368421 [Abstract] [Full Text] [Related]
16. The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M. Brain; 1998 Feb 23; 121 ( Pt 2)():253-64. PubMed ID: 9549504 [Abstract] [Full Text] [Related]
17. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M. Brain; 1993 Dec 23; 116 ( Pt 6)():1387-98. PubMed ID: 8293277 [Abstract] [Full Text] [Related]
18. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Brain; 1995 Aug 23; 118 ( Pt 4)():913-33. PubMed ID: 7655888 [Abstract] [Full Text] [Related]
19. Statistical probability mapping reveals high-frequency magnetoencephalographic activity in supplementary motor area during self-paced finger movements. Kaiser J, Lutzenberger W, Preissl H, Mosshammer D, Birbaumer N. Neurosci Lett; 2000 Mar 31; 283(1):81-4. PubMed ID: 10729639 [Abstract] [Full Text] [Related]
20. Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Okano K, Tanji J. Exp Brain Res; 1987 Mar 31; 66(1):155-66. PubMed ID: 3582529 [Abstract] [Full Text] [Related] Page: [Next] [New Search]