These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 8738231

  • 21. Single-unit analysis of postnatal olfactory learning: modified olfactory bulb output response patterns to learned attractive odors.
    Wilson DA, Sullivan RM, Leon M.
    J Neurosci; 1987 Oct; 7(10):3154-62. PubMed ID: 3668621
    [Abstract] [Full Text] [Related]

  • 22. Anatomic mapping of neuronal odor responses in the developing rat olfactory bulb.
    Guthrie KM, Gall C.
    J Comp Neurol; 2003 Jan 01; 455(1):56-71. PubMed ID: 12454996
    [Abstract] [Full Text] [Related]

  • 23. Expression of c-fos in the main olfactory bulb of neonatal rabbits in response to garlic as a novel and conditioned odour.
    Allingham K, Brennan PA, Distel H, Hudson R.
    Behav Brain Res; 1999 Oct 01; 104(1-2):157-67. PubMed ID: 11125735
    [Abstract] [Full Text] [Related]

  • 24. Sex difference and testosterone modulation of pheromone-induced NeuronalFos in the Ferret's main olfactory bulb and hypothalamus.
    Kelliher KR, Chang YM, Wersinger SR, Baum MJ.
    Biol Reprod; 1998 Dec 01; 59(6):1454-63. PubMed ID: 9828192
    [Abstract] [Full Text] [Related]

  • 25. Odor-induced sexual maturation and expression of c-fos in the olfactory system of juvenile female mice.
    Schellinck HM, Smyth C, Brown R, Wilkinson M.
    Brain Res Dev Brain Res; 1993 Jul 16; 74(1):138-41. PubMed ID: 8403368
    [Abstract] [Full Text] [Related]

  • 26. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb.
    Salcedo E, Zhang C, Kronberg E, Restrepo D.
    Chem Senses; 2005 Sep 16; 30(7):615-26. PubMed ID: 16141292
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. 'When an old rat smells a cat': A decline in defense-related, but not accessory olfactory, Fos expression in aged rats.
    Hunt GE, Van Nieuwenhuijzen PS, Chan-Ling T, McGregor IS.
    Neurobiol Aging; 2011 Apr 16; 32(4):737-49. PubMed ID: 19394115
    [Abstract] [Full Text] [Related]

  • 29. Dissociation of behavioral and neural correlates of early associative learning.
    Sullivan RM, Wilson DA.
    Dev Psychobiol; 1995 May 16; 28(4):213-9. PubMed ID: 7621984
    [Abstract] [Full Text] [Related]

  • 30. Regulation of c-Fos gene expression in the rat olfactory bulb during olfactory learning.
    Solov'eva NA, Lagutina LV, Antonova LV, Anokhin KV.
    Neurosci Behav Physiol; 2007 Sep 16; 37(7):697-704. PubMed ID: 17763989
    [Abstract] [Full Text] [Related]

  • 31. Extracellular dopamine increases in the neonatal olfactory bulb during odor preference training.
    Coopersmith R, Weihmuller FB, Kirstein CL, Marshall JF, Leon M.
    Brain Res; 1991 Nov 08; 564(1):149-53. PubMed ID: 1777817
    [Abstract] [Full Text] [Related]

  • 32. Glycogen phosphorylase activity in the olfactory bulb of the young rat.
    Coopersmith R, Leon M.
    J Comp Neurol; 1987 Jul 01; 261(1):148-54. PubMed ID: 3624541
    [Abstract] [Full Text] [Related]

  • 33. Functional mapping of odor-activated neurons in the olfactory bulb.
    Guthrie KM, Gall CM.
    Chem Senses; 1995 Apr 01; 20(2):271-82. PubMed ID: 7583022
    [Abstract] [Full Text] [Related]

  • 34. Fos protein immunoreactivity in the developing olfactory bulbs of normal and naris-occluded rats.
    Klintsova AY, Philpot BD, Brunjes PC.
    Brain Res Dev Brain Res; 1995 May 26; 86(1-2):114-22. PubMed ID: 7656404
    [Abstract] [Full Text] [Related]

  • 35. Early olfactory learning induces an enhanced olfactory bulb response in young rats.
    Sullivan RM, Leon M.
    Brain Res; 1986 Jun 26; 392(1-2):278-82. PubMed ID: 3708381
    [Abstract] [Full Text] [Related]

  • 36. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model.
    Cui W, Darby-King A, Grimes MT, Howland JG, Wang YT, McLean JH, Harley CW.
    Learn Mem; 2011 Jun 26; 18(5):283-91. PubMed ID: 21498562
    [Abstract] [Full Text] [Related]

  • 37. The role of olfactory bulb norepinephrine in early olfactory learning.
    Sullivan RM, Zyzak DR, Skierkowski P, Wilson DA.
    Brain Res Dev Brain Res; 1992 Dec 18; 70(2):279-82. PubMed ID: 1477962
    [Abstract] [Full Text] [Related]

  • 38. Diverse effect of different odor stimuli on behavior and Fos protein production in the olfactory system neurogenic region of adult rats.
    Fabianová K, Martončíková M, Fabian D, Blaško J, Račeková E.
    Behav Brain Res; 2014 May 15; 265():38-48. PubMed ID: 24485916
    [Abstract] [Full Text] [Related]

  • 39. Granule and mitral cell densities are unchanged following early olfactory preference training.
    McCollum JF, Woo CC, Leon M.
    Brain Res Dev Brain Res; 1997 Mar 17; 99(1):118-20. PubMed ID: 9088573
    [Abstract] [Full Text] [Related]

  • 40. Sexual incentive motivation, olfactory preference, and activation of the vomeronasal projection pathway by sexually relevant cues in non-copulating and naive male rats.
    Portillo W, Paredes RG.
    Horm Behav; 2004 Sep 17; 46(3):330-40. PubMed ID: 15325233
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.