These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 8748534

  • 1. Reexamination of steady solutions of a collapsible channel conveying fluid.
    Matsuzaki Y, Fujimura K.
    J Biomech Eng; 1995 Nov; 117(4):492-4. PubMed ID: 8748534
    [Abstract] [Full Text] [Related]

  • 2. Wall shear stress estimates in coronary artery constrictions.
    Back LH, Crawford DW.
    J Biomech Eng; 1992 Nov; 114(4):515-20. PubMed ID: 1487905
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Wave motions in a collapsible tube conveying fluid.
    Matsuzaki Y, Matsumoto T.
    Monogr Atheroscler; 1990 Nov; 15():138-49. PubMed ID: 2296240
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Motion of a doublet of two cylinders in contact in a narrow channel flow.
    Sugihara-Seki M.
    J Biomech Eng; 1992 Nov; 114(4):546-9. PubMed ID: 1487911
    [Abstract] [Full Text] [Related]

  • 7. Measurement of steady-flow instability and turbulence levels in Dacron vascular grafts.
    Shombert DG.
    J Biomech Eng; 1992 Nov; 114(4):521-6. PubMed ID: 1487906
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H, Savory E, Rogers KA.
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Hemodynamic modeling and simulation of the vascular system].
    Boll HP, Wagner A, Lutter N, Stork W, Müller-Glaser KD.
    Biomed Tech (Berl); 2002 Mar; 47 Suppl 1 Pt 1():239-42. PubMed ID: 12451827
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables.
    Lee BK, Kwon HM, Kim D, Yoon YW, Seo JK, Kim IJ, Roh HW, Suh SH, Yoo SS, Kim HS.
    Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Flow studies in canine artery bifurcations using a numerical simulation method.
    Xu XY, Collins MW, Jones CJ.
    J Biomech Eng; 1992 Nov; 114(4):504-11. PubMed ID: 1487903
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [Orthotopic arteriovenous fistula in dialysis patients: a special application of fluid dynamic processes].
    Pflugbeil G, Liepsch D, von Sommoggy S, Tröster J, Klein G, Maurer PC.
    Vasa; 1993 Nov; 22(2):143-8. PubMed ID: 8322502
    [Abstract] [Full Text] [Related]

  • 19. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R, Priyadharshini S.
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [Abstract] [Full Text] [Related]

  • 20. Repression of wall shear stress inside cerebral aneurysm at bifurcation of anterior cerebral artery by stents.
    Yamaguchi R, Tanaka G, Liu H, Ujiie H.
    Heart Vessels; 2016 Apr; 31(4):622-7. PubMed ID: 25813684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.