These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 8754685

  • 1. A metal-accumulator mutant of Arabidopsis thaliana.
    Delhaize E.
    Plant Physiol; 1996 Jul; 111(3):849-55. PubMed ID: 8754685
    [Abstract] [Full Text] [Related]

  • 2. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S, Meier B, von Wirén N, Peiter E.
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [Abstract] [Full Text] [Related]

  • 3. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.
    Lešková A, Giehl RFH, Hartmann A, Fargašová A, von Wirén N.
    Plant Physiol; 2017 Jul; 174(3):1648-1668. PubMed ID: 28500270
    [Abstract] [Full Text] [Related]

  • 4. Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells.
    Moog PR, van der Kooij TA, Brüggemann W, Schiefelbein JW, Kuiper PJ.
    Planta; 1995 Jul; 195(4):505-13. PubMed ID: 7766049
    [Abstract] [Full Text] [Related]

  • 5. A rice PHD-finger protein OsTITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals.
    Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T.
    Plant J; 2018 Dec; 96(5):997-1006. PubMed ID: 30194869
    [Abstract] [Full Text] [Related]

  • 6. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.
    Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL.
    Plant Physiol; 2006 Aug; 141(4):1446-58. PubMed ID: 16815956
    [Abstract] [Full Text] [Related]

  • 7. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function.
    Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ.
    Plant Mol Biol; 1992 Dec; 20(6):1019-28. PubMed ID: 1463837
    [Abstract] [Full Text] [Related]

  • 8. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.
    Yi Y, Guerinot ML.
    Plant J; 1996 Nov; 10(5):835-44. PubMed ID: 8953245
    [Abstract] [Full Text] [Related]

  • 9. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis.
    Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C.
    J Biol Chem; 2003 Nov 28; 278(48):47644-53. PubMed ID: 13129917
    [Abstract] [Full Text] [Related]

  • 10. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis.
    Rogers EE, Guerinot ML.
    Plant Cell; 2002 Aug 28; 14(8):1787-99. PubMed ID: 12172022
    [Abstract] [Full Text] [Related]

  • 11. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply.
    Arrivault S, Senger T, Krämer U.
    Plant J; 2006 Jun 28; 46(5):861-79. PubMed ID: 16709200
    [Abstract] [Full Text] [Related]

  • 12. Characterization of a Phosphate-Accumulator Mutant of Arabidopsis thaliana.
    Delhaize E, Randall PJ.
    Plant Physiol; 1995 Jan 28; 107(1):207-213. PubMed ID: 12228355
    [Abstract] [Full Text] [Related]

  • 13. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions.
    Cailliatte R, Schikora A, Briat JF, Mari S, Curie C.
    Plant Cell; 2010 Mar 28; 22(3):904-17. PubMed ID: 20228245
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.
    Lorenzen M, Racicot V, Strack D, Chapple C.
    Plant Physiol; 1996 Dec 28; 112(4):1625-30. PubMed ID: 8972602
    [Abstract] [Full Text] [Related]

  • 16. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP, Connolly EL, Rogers EE.
    Plant J; 2006 Aug 28; 47(3):467-79. PubMed ID: 16813577
    [Abstract] [Full Text] [Related]

  • 17. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis thaliana Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil.
    Kühnlenz T, Hofmann C, Uraguchi S, Schmidt H, Schempp S, Weber M, Lahner B, Salt DE, Clemens S.
    Plant Cell Physiol; 2016 Nov 28; 57(11):2342-2352. PubMed ID: 27694524
    [Abstract] [Full Text] [Related]

  • 18. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content.
    Mentewab A, Matheson K, Adebiyi M, Robinson S, Elston B.
    PLoS One; 2014 Nov 28; 9(10):e109310. PubMed ID: 25310285
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.