These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 8757292
1. Glycosylated threonine but not 4-hydroxyproline dominates the triple helix stabilizing positions in the sequence of a hydrothermal vent worm cuticle collagen. Mann K, Mechling DE, Bächinger HP, Eckerskorn C, Gaill F, Timpl R. J Mol Biol; 1996 Aug 16; 261(2):255-66. PubMed ID: 8757292 [Abstract] [Full Text] [Related]
5. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10. Doi M, Nishi Y, Uchiyama S, Nishiuchi Y, Nishio H, Nakazawa T, Ohkubo T, Kobayashi Y. J Pept Sci; 2005 Oct 12; 11(10):609-16. PubMed ID: 15880478 [Abstract] [Full Text] [Related]
6. Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site. Zal F, Suzuki T, Kawasaki Y, Childress JJ, Lallier FH, Toulmond A. Proteins; 1997 Dec 12; 29(4):562-74. PubMed ID: 9408952 [Abstract] [Full Text] [Related]
7. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Shah NK, Ramshaw JA, Kirkpatrick A, Shah C, Brodsky B. Biochemistry; 1996 Aug 13; 35(32):10262-8. PubMed ID: 8756681 [Abstract] [Full Text] [Related]
8. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. Sicot FX, Mesnage M, Masselot M, Exposito JY, Garrone R, Deutsch J, Gaill F. J Mol Biol; 2000 Sep 29; 302(4):811-20. PubMed ID: 10993725 [Abstract] [Full Text] [Related]
9. Role of carbohydrate in stabilizing the triple-helix in a model for a deep-sea hydrothermal vent worm collagen. Bann JG, Bächinger HP, Peyton DH. Biochemistry; 2003 Apr 15; 42(14):4042-8. PubMed ID: 12680757 [Abstract] [Full Text] [Related]
11. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W, Battineni ML, Brodsky B. Biochemistry; 1997 Jun 10; 36(23):6930-5. PubMed ID: 9188687 [Abstract] [Full Text] [Related]
12. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. Bann JG, Bächinger HP. J Biol Chem; 2000 Aug 11; 275(32):24466-9. PubMed ID: 10827193 [Abstract] [Full Text] [Related]
13. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B. Biochemistry; 2005 Feb 08; 44(5):1414-22. PubMed ID: 15683226 [Abstract] [Full Text] [Related]
14. Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats. Berisio R, Granata V, Vitagliano L, Zagari A. J Am Chem Soc; 2004 Sep 22; 126(37):11402-3. PubMed ID: 15366862 [Abstract] [Full Text] [Related]
15. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence. Okuyama K, Miyama K, Morimoto T, Masakiyo K, Mizuno K, Bächinger HP. Biopolymers; 2011 Sep 22; 95(9):628-40. PubMed ID: 21442606 [Abstract] [Full Text] [Related]
16. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC, Roontga V, Daragan VA, Mayo KH, Tirrell M, Fields GB. Biochemistry; 1999 Feb 02; 38(5):1659-68. PubMed ID: 9931034 [Abstract] [Full Text] [Related]
18. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Chen YS, Chen CC, Horng JC. Biopolymers; 2011 Feb 02; 96(1):60-8. PubMed ID: 20560144 [Abstract] [Full Text] [Related]