These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 8759740

  • 1. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
    Okumura M, Matthews RJ, Robb B, Litman GW, Bork P, Thomas ML.
    J Immunol; 1996 Aug 15; 157(4):1569-75. PubMed ID: 8759740
    [Abstract] [Full Text] [Related]

  • 2. Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans.
    Montoya GE, Vernot JP, Patarroyo ME.
    Tissue Antigens; 2004 Aug 15; 64(2):165-72. PubMed ID: 15245371
    [Abstract] [Full Text] [Related]

  • 3. Isolation and structural analysis of a biologically active chicken c-fos cDNA: identification of evolutionarily conserved domains in fos protein.
    Mölders H, Jenuwein T, Adamkiewicz J, Müller R.
    Oncogene; 1987 Aug 15; 1(4):377-85. PubMed ID: 3330781
    [Abstract] [Full Text] [Related]

  • 4. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain.
    Zhou LJ, Ord DC, Hughes AL, Tedder TF.
    J Immunol; 1991 Aug 15; 147(4):1424-32. PubMed ID: 1714482
    [Abstract] [Full Text] [Related]

  • 5. Organization and expression of thirteen alternatively spliced exons in catfish CD45 homologs.
    Kountikov E, Wilson M, Miller N, Clem W, Bengtén E.
    Dev Comp Immunol; 2004 Aug 15; 28(10):1023-35. PubMed ID: 15236932
    [Abstract] [Full Text] [Related]

  • 6. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates.
    Filip LC, Mundy NI.
    Mol Biol Evol; 2004 Aug 15; 21(8):1504-11. PubMed ID: 15014144
    [Abstract] [Full Text] [Related]

  • 7. Characterisation of salmon and trout CD8alpha and CD8beta.
    Moore LJ, Somamoto T, Lie KK, Dijkstra JM, Hordvik I.
    Mol Immunol; 2005 Jun 15; 42(10):1225-34. PubMed ID: 15829311
    [Abstract] [Full Text] [Related]

  • 8. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms.
    Lee PL, Gelbart T, West C, Halloran C, Beutler E.
    Blood Cells Mol Dis; 1998 Jun 15; 24(2):199-215. PubMed ID: 9642100
    [Abstract] [Full Text] [Related]

  • 9. Identification of allelic variants of the bovine immune regulatory molecule CEACAM1 implies a pathogen-driven evolution.
    Kammerer R, Popp T, Singer BB, Schlender J, Zimmermann W.
    Gene; 2004 Sep 15; 339():99-109. PubMed ID: 15363850
    [Abstract] [Full Text] [Related]

  • 10. A new member of the Eph family of receptors that lacks protein tyrosine kinase activity.
    Gurniak CB, Berg LJ.
    Oncogene; 1996 Aug 15; 13(4):777-86. PubMed ID: 8761299
    [Abstract] [Full Text] [Related]

  • 11. Diversity and evolution of the thyroglobulin type-1 domain superfamily.
    Novinec M, Kordis D, Turk V, Lenarcic B.
    Mol Biol Evol; 2006 Apr 15; 23(4):744-55. PubMed ID: 16368776
    [Abstract] [Full Text] [Related]

  • 12. Molecular cloning of the mouse polymeric Ig receptor. Functional regions of the molecule are conserved among five mammalian species.
    Piskurich JF, Blanchard MH, Youngman KR, France JA, Kaetzel CS.
    J Immunol; 1995 Feb 15; 154(4):1735-47. PubMed ID: 7836758
    [Abstract] [Full Text] [Related]

  • 13. Sequence evolution, processing, and posttranslational modification of zonadhesin D domains in primates, as inferred from cDNA data.
    Herlyn H, Zischler H.
    Gene; 2005 Dec 05; 362():85-97. PubMed ID: 16185823
    [Abstract] [Full Text] [Related]

  • 14. Point mutation in the second phosphatase domain of CD45 abrogates tyrosine phosphatase activity.
    Ng DH, Maiti A, Johnson P.
    Biochem Biophys Res Commun; 1995 Jan 05; 206(1):302-9. PubMed ID: 7818534
    [Abstract] [Full Text] [Related]

  • 15. CD154-CD40 interactions are essential for thymus-dependent antibody production in zebrafish: insights into the origin of costimulatory pathway in helper T cell-regulated adaptive immunity in early vertebrates.
    Gong YF, Xiang LX, Shao JZ.
    J Immunol; 2009 Jun 15; 182(12):7749-62. PubMed ID: 19494299
    [Abstract] [Full Text] [Related]

  • 16. The phosphatase domains of LAR, CD45, and PTP1B: structural correlations with peptide-based inhibitors.
    Glover NR, Tracey AS.
    Biochem Cell Biol; 2000 Jun 15; 78(1):39-50. PubMed ID: 10735562
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the chicken CD200 receptor family.
    Viertlboeck BC, Hanczaruk MA, Schmitt FC, Schmitt R, Göbel TW.
    Mol Immunol; 2008 Apr 15; 45(7):2097-105. PubMed ID: 18062907
    [Abstract] [Full Text] [Related]

  • 18. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule.
    Holm D, Fink DR, Grønlund J, Hansen S, Holmskov U.
    Mol Immunol; 2009 May 15; 46(8-9):1663-72. PubMed ID: 19297026
    [Abstract] [Full Text] [Related]

  • 19. CD45 in memory and disease.
    Tchilian EZ, Beverley PC.
    Arch Immunol Ther Exp (Warsz); 2002 May 15; 50(2):85-93. PubMed ID: 12022705
    [Abstract] [Full Text] [Related]

  • 20. Molecular cloning and characterization of bovine P-selectin glycoprotein ligand-1.
    Xu J, Cai J, Barger BA, Peek S, Darien BJ.
    Vet Immunol Immunopathol; 2006 Mar 15; 110(1-2):155-61. PubMed ID: 16263180
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.